
Detection of Random Correction
from Source Code Snapshots

Yu OHNO
Dept. Information Engineering

National Institute of Technology, Nara
College, Nara, Japan 639-1080

+81 743-55-6000
a0899@stdmail.nara-k.ac.jp

Hidetake UWANO
Dept. Information Engineering

National Institute of Technology, Nara
College, Nara, Japan 639-1080

+81 743-55-6000
uwano@info.nara-k.ac.jp

Shinji UCHIDA
Dept. Information Engineering

National Institute of Technology, Nara
College, Nara, Japan 639-1080

+81 743-55-6000
uchida@info.nara-k.ac.jp

ABSTRACT
Classifying student’s situation helps teachers to improve
educational effect. In this paper, authors propose two metrics to
classify the student's "random correction." Random Correction is
an action that source code correction without understanding the
exercise contents. We select a programming course with Online
Judge System as a target, then analyze the characteristics of
random correction from recorded snapshots. The result of the
experiment showed that students who cannot reach perfect score
have high value of both metrics; 1) a degree of imbalance
corrections between source code lines, 2) the number of submitted
revisions.

CCS Concepts
•Applied computing➝Education • Social and professional
topics➝Computing education➝Computing education
programs➝Information systems education • Social and
professional topics➝Computing education➝Computing
education programs➝Software engineering education

Keywords
Programming Education; Online Judge System; Activity
Estimation;

1. INTRODUCTION
Classifying student’s situation helps improve educational effect in
various classes. Several studies have classified student’s situation
in course [1, 2, 3]. Also many studies classify student’s situation
in programming course with snapshots [4, 5, 6, 7, 8]. Snapshot is
a set of the program state contains source code, date of
create/update, errors and so on. Existing studies grasp student who
falls “pitfall” during a course from the snapshots. In this paper,
authors target programming course with Online Judge System
(OJS) to classify students who need teacher’s assistance.
OJS is a system designed for evaluation of source code submitted
by system users. The system compiles, executes and scores source
code automatically based on the execution result. Students is

notified their source code’s score immediately after the
submission of the code. OJS operates with (or as a plugin of)
Learning Management System (LMS), submits the source code to
prepared exercises, and student learns by receiving score.
In programming course without OJS, students submit the source
code only once and cannot see the score, therefore the students
cannot realize the source code is not fulfill the requirement.
Conversely in programming course with OJS, students know the
latest submission is not fulfill the requirements immediately.
Therefore they can try to correct the error until the source code
fulfill the requirements.
In this paper, we aim to classify "random correction" which is
observed in programming course with OJS. In the programming
course with OJS, students repeatedly submit source code until the
requirements are fulfilled (i.e. they obtain the perfect score.)
However, some students attempt to obtain perfect score by correct
the source code repeatedly and randomly. Fulfill the exercise
requirements with random correction disturb the student
understandings for new syntax and/or algorithm. We propose two
metrics to classify the random correction from the edit history of
source code. Classification of random correction allows teachers
encourage the student to understand their errors or lecture
contents.

2. RELATED WORKS
Fujiwara et al. analyzed novice programmer’s source code edit
history recorded during programming exercises in two
viewpoints: 1) heuristic analysis by skilled programmers and 2)
Levenshtein distance at the token level source code based on
lexical analysis [4]. As a result, authors found several patterns in
novice behavior while they falls pitfalls, i.e. novices edit a code
snippet that unrelated to the content of the exercise. Authors also
found fluctuation of edit distance will denote the situation that
novice is in pitfalls.

Jadud et al. proposed a method to classify behaviors of error
creation and correction during programming lectures for novices
[5]. The method uses Error Quotient (EQ) which is calculated by
the number of errors creation and correction. The research result
shows two significant negative correlations: between EQ and
exercise scores, and between EQ and grade of a lecture exam.
Watson et al. proposed modified EQ metrics Watwin, that
consider how much time student think for errors [6]. Ahadi et al.
classify students with machine learning based on EQ and Watwin
[7].

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.
DOI: http://dx.doi.org/10.1145/12345.67890

Blikstein et al. analyzed the situation and behavior of the students
in the open-ended programming tasks. Blikstein calculated the
number of compiles, the size of the source code, the number of
compile success/failure, etc. from the snapshot [8].

Our research targets a programming course with OJS, whereas the
previous studies intended to a programming course without OJS.
Our research also differs from previous studies in that we focus on
random correction as a classification targets.

3. PREPARATION
3.1 Programming Course with OJS
Target lecture is “programming 1” for novice students in our
college: Programming exercise follow teacher’s lecture about a
study-unit, such as “for” statement or array data. Each student
edits a source code at online IDE (Integrated Development
Environment) then submits to OJS. OJS compiles and executes
the submitted source code and judges whether it matches the test
case prepared by the teacher. A test case is a set of an input and
expected output for testing whether the created program satisfies
the requirements. OJS calculates the score by the following
formula according to the number of the matching output.

𝑠𝑐𝑜𝑟𝑒 =
#Matches	of	test	cases	

#Test	cases ∗ 	100	[points]								(1)

The system displays the judge result including score,
correct/incorrect of each test case, and/or compile error and
runtime error. The student repeatedly corrects and submits the
source code until the score reaches 100 points (perfect score) or
the time limit is come. The all source code is recorded as a
revision with the submission date, time, and score.

3.2 Random Correction
We define "random correction" as an action that source code
correction without understanding the exercise contents. Figure 1
shows an example of random correction. The figure shows an edit
history of a certain student in a certain task. Each square describes
code snippet at each revisions. The student submitted a source
code twenty times within five minutes from first revision. The
student corrects only the argument of the print statement through
the all revisions. The student is considered to change the
statement without any consideration for cause of the error because
the student applied the same correction pattern in Revision 2 and
Revision 6. Students who make a random correction may tend to
apply their correction pattern multiple times to a particular line
which is considered to be the cause of the error. As an ideal
condition, students should consider and investigate the cause of
point-reduction (or errors) to understand their misunderstandings.
However, if the student reach a right answer by random correction,
they finish the exercise without understanding the specifications
and algorithms of the given program, the newly learned syntax,
and so on.
Also non-novice programmers make random corrections during
their programming. The non-novice programmer tries endless
debugging and see what happens [9]. Ben-Ari et al. defines such
behavior as bricolage and states that it is inefficient to iterate
source code correction without considering the cause of the error.
Classification of random correction during exercise allows
teachers to encourage the students to understand the study-units.

4. PROPOSED METRICS
We propose two metrics to classify random correction activity
from student’s source code edit histories. The classification helps
teachers to support student understandings. The metrics calculated
based on the following two hypotheses for random correction in
certain time period 𝑡. In this paper, we uses elapsed time from
first revision of each student in each exercise as 𝑡.

𝐹𝑟𝑒𝑞(𝑡) is a degree of imbalance corrections between source code
lines. A student who makes a random correction may tend to
apply his/her correction pattern multiple times to a particular line
which is considered as a cause of the error: that is, the student
correct a single line repeatedly (hypothesis H1.) To calculate the
metric, we assign ID to each line of the source code (Figure 2.)
When a new line is added at any revision, a new ID is assigned to
the line. 𝐹𝑟𝑒𝑞(𝑡) is a variance which calculated from the number
of corrections at each 𝐼𝐷 = {𝑖𝑑E, 𝑖𝑑G,⋯ , 𝑖𝑑I,⋯ , 𝑖𝑑J}.

𝐹𝑟𝑒𝑞(𝑡) =
1
𝑁MN

𝑐I
𝑠 − 𝜇Q

GJ

IRE

																							(2)

Here, 𝑡 is the elapsed time from first revision, 𝑐I is the number of
corrections at 𝑖𝑑I, 𝑠 and	𝜇 are calculated from following formulas.

𝑠 =M𝑐I

J

IRE

,											𝜇 =
1
𝑁M

𝑐I
𝑠

J

IRE

																		(3)

We suppose that 𝐹𝑟𝑒𝑞(𝑡) tends to high by random correction.

H1: Fix same code line frequently

H2: Correct and/or compile source code frequently

Figure 1. An example of Random Correction

.

Figure 2. Line ID Assign

𝑅𝑒𝑣𝑠(𝑡) is the number of revisions submitted within 𝑡 minutes
from first revision. When students make a random correction, they
tends to apply their correction pattern multiple times to a
particular line which is considered as the cause of the error.
Therefore, the number of corrections and compilations within a
time increases (hypothesis H2.)

5. EXPERIMENTS
This section shows an experiment result to evaluate the
effectiveness of two metrics, 𝐹𝑟𝑒𝑞(𝑡) and 𝑅𝑒𝑣𝑠(𝑡).

5.1 Dataset
We uses OJS logs which is collected at programming lecture in
our college as a dataset. The course is a 90-minutes lecture of Java
programming basics for novice students with exercise. Course
teacher makes the exercise, then collects/evaluates the student
submissions through CodeRunner which provides OJS functions
to Moodle Learning Management System (LMS). CodeRunner
records the source code submitted by the students with the
assignment ID, student ID, revision number, submission date, and
score.	In addition, students who obtain perfect score in first
revision or submit once (i.e. 𝑅𝑒𝑣𝑠(𝑡) 	= 	1) are excluded from
analysis because 𝐹𝑟𝑒𝑞(𝑡) can not be calculated if 𝑅𝑒𝑣𝑠(𝑡) 	= 	1.
In this paper, we conduct experiments on 1,474 source codes (11
exercises, 227 people) collected from June 21 to September 1,
2017.

5.2 Evaluation
We focus on the change in the score of the first revision for each
exercise by each student, 𝑠𝑐𝑜𝑟𝑒E, and the score of latest revision
within 𝑡, 𝑠𝑐𝑜𝑟𝑒(𝑡). In the programming lecture with OJS, students
who reach the perfect score (100) seldom make random correction
because they already know how to correct source code. Students
who reach 1-99 points revision after several 0 point revisions
grasp the part of the code that should be correct via previous
revisions. After the 1-99 points revision, some of the students find
the cause of the error, then reach perfect score in a few revisions.
On the other hand, some of them make random correction without
thinking about the cause of error, hence these students stay at 1-99
points in following revisions. Also, students who stays zero points
cannot even grasp where to modify source code. In this paper,
each student is classified as two groups from 𝑠𝑐𝑜𝑟𝑒E: 𝑠𝑐𝑜𝑟𝑒E = 0
and 1 ≤ 𝑠𝑐𝑜𝑟𝑒E ≤ 99. Also the same students are classified as
three groups from 𝑠𝑐𝑜𝑟𝑒(𝑡): 𝑠𝑐𝑜𝑟𝑒(𝑡) = 0, 1 ≤ 𝑠𝑐𝑜𝑟𝑒(𝑡) ≤ 99,
and 𝑠𝑐𝑜𝑟𝑒(𝑡) = 100. Figure 3 shows six groups which is divided
from different score transitions through 𝑠𝑐𝑜𝑟𝑒E to 𝑠𝑐𝑜𝑟𝑒(𝑡). Here,
𝑆(Z,[\]) means the score of student’s first revision is 0, then the
score changes to the range 1-99 at latest revision within the time 𝑡.
We evaluate a difference of 𝐹𝑟𝑒𝑞(𝑡) and 𝑅𝑒𝑣𝑠(𝑡) among groups

to understand whether these metrics relate with scores changes. In
this paper, 𝑆([\],Z), 𝑆([\],[\]), and 𝑆([\],EZZ) are excluded from
the analysis since a lack the number of data. We aim to classify
random corrections during exercise, hence early detection from
first revision is required. In this paper, we use 40 minutes as the
maximum of 𝑡 and calculate each metrics and score in every 10
minute for analysis.

5.3 Results and Discussions
Figure 4 and 5 shows the average values of 𝐹𝑟𝑒𝑞(𝑡) and
𝑅𝑒𝑣𝑠(𝑡)	with the results of the Welch's t-test at 𝑡	 = 10, 20, 30
and 40, respectively. As shown in Figure 4, 𝐹𝑟𝑒𝑞(𝑡) of 𝑆(Z,EZZ) is
the highest in all 𝑡, and significant difference with 𝑆(Z,Z). Also the
smaller 𝐹𝑟𝑒𝑞(𝑡) was observed when the 𝑡 is increased at 𝑆(Z,Z)
and 𝑆(Z,EZZ). Figure 5 shows 𝑅𝑒𝑣𝑠(𝑡) is higher in the order of
𝑆(Z,[\]) , 𝑆(Z,Z) , 𝑆(Z,EZZ) ; and 𝑆(Z,Z) is significantly higher than
𝑆(Z,EZZ) at all 𝑡. In all groups, 𝑅𝑒𝑣𝑠(𝑡) increases as 𝑡 increases.

The results showed the 𝑆(Z,EZZ) group has the highest 𝐹𝑟𝑒𝑞(𝑡) and
the lowest 𝑅𝑒𝑣𝑠(𝑡) compared with other groups. This indicates
that the students in the 𝑆(Z,EZZ) group have reached correct

Figure 3. Six Group based on 𝒔𝒄𝒐𝒓𝒆𝟏 and 𝒔𝒄𝒐𝒓𝒆(𝒕)

Figure 4. Average Value of 𝑭𝒓𝒆𝒒(𝒕) (N=206)

Figure 5. Average Value of 𝑹𝒆𝒗𝒔(𝒕) (N=206)

answers by correcting the fewer lines within the several revisions.
The students seemed to understand the subjects of the exercise
and/or the cause of the error, hence the student could correct with
a few modification. Such correction pattern may cause from a
strict scoring method by the OJS. OJS evaluates source code by
matching the characters between the execution results and the test
case. Therefore, even if the algorithm of the submission is correct
to an assignment, OJS judges the code as incorrect when the
format of output (e.g. number of blanks and the letters’
uppercase/lowercase) are different. We found multiple cases of
the correction pattern in students’ edit history such as source code
outputs "Output: 0" or "OutPut: 0" for correct output "OutPut:0".
Also, the students corrected these errors in several revisions, and
reached to the correct answer.

In contrast, 𝑆(Z,Z) group has a significantly higher 𝑅𝑒𝑣𝑠(𝑡) and
lower 𝐹𝑟𝑒𝑞(𝑡) compared with 𝑆(Z,EZZ) group. This indicates that
the students in the 𝑆(Z,Z) group corrects a wide range of source
code with many revisions, however they cannot reach the correct
answer. Figure 6 shows a edit history of a student in 𝑆(Z,Z) group.
The student change a wide range of the source code and occurs
multiple compile error. These edit pattern shows the student has
less understanding of errors, and try to correct the code by random
correction. Therefore the lower 𝐹𝑟𝑒𝑞(𝑡) may useful for random
correction detection.

𝑅𝑒𝑣𝑠(𝑡) of the 𝑆(Z,[\])	group is higher than the other two groups
and 𝐹𝑟𝑒𝑞(𝑡) is higher than 𝑆(Z,Z). From these results, students of
𝑆(Z,[\]) group partially reached correct answers by correcting
specific lines through many revisions compared to the students in
the 𝑆(Z,Z) group. The result shows the 𝑆(Z,[\]) group performs
random correction as defined in this paper (H1 and H2 in Section
4.) Figure 7 shows an edit history of the student in the 𝑆(Z,[\])

group. The student stay 0 score from first revision to revision 5,
then get 25 score at revision 6. After the revision 8, the student
submits source code with small modification five times in four
minutes, however the score is still low. The each modification
shows the student has less understanding about the cause of low
score, and try to correct the code by random correction.

The result also shows the differences between 𝑆(Z,Z) and 𝑆(Z,EZZ)
groups. In both groups, the higher 𝑡 value means the lower
𝐹𝑟𝑒𝑞(𝑡), and the higher 𝑅𝑒𝑣𝑠(𝑡), however the 𝑆(Z,Z) group has a
stronger tendency. The number of student in 𝑆(Z,Z) decreases at
later 𝑡, because some student reach the correct source code during
the modifications, then move to the 𝑆(Z,EZZ). Hence the student in
𝑆(Z,Z) at later 𝑡 means the student stays non-perfect score in the
long time. The lower 𝐹𝑟𝑒𝑞(𝑡) and the higher 𝑅𝑒𝑣𝑠(𝑡) of 𝑆(Z,Z) in
later 𝑡 indicates that the student modifies source code in a wider
range through many revisions, that means the student cannot

Figure 7. Example of 𝑺(𝟎,𝒎𝒊𝒅) Student’s Edit History Figure 6. Example of 𝑺(𝟎,𝟎) Student’s Edit History

understand the cause of low scores. The result suggests that the
metrics is useful indicator to predict future score of each student
based on their source code edit history. Similar tendency was
observed at 𝑅𝑒𝑣𝑠(𝑡) in 𝑆(Z,[\]) (the higher value in the later 𝑡.)
However the number of student at each 𝑡 is small, hence the future
research is required.

6. CONCLUSION
In this paper, we propose metrics to classify random correction
from the snapshot of the source code submitted to the OJS.
𝐹𝑟𝑒𝑞(𝑡) represents a degree of imbalance corrections between
source code lines, and 𝑅𝑒𝑣𝑠(𝑡) represents the number of
submitted revisions. The result of the experiment shows that
students who cannot reach perfect score had high value of both
metrics. Also the snap shots of non-perfect score students describe
that they correct the source code randomly. We think distinction
of random correction from student activity during programming
exercise increases the chance of efficient coaching. Dynamic
detection of random correction by these metrics will useful
functional enhancement of OJS to efficient teaching.

As a future work, time series analysis of metrics is an important
work for more detail understanding of random correction. The
result of snap shot analysis suggests that student who takes a non-
zero (and non-perfect) scored submission after the continued zero-
point submissions start a random correction. That is, even students
who make a random corrections did not such correction method
all the time. They identifies the code snippet which need to
modify via OJS output, then starts “tries often enough” method to
get a perfect score. Comparing the metrics before and after the
score change will clarify the change of student activity.

Classification of random corrections using machine learning is
also a future work. OJS with auto-classification of random
correction (or other student activities) improves the education
effect of e-class without teachers. In this paper, we analyzed the
metrics and score at the point in the time 𝑡 elapsed from the first
revision. Score estimation at after the certain time (e.g. 𝑡 + 30)
from current metrics is an interesting work.

7. REFERENCES
[1] R. Yoshihashi, D. Shimada, and H. Iyatomi, “Feasibility

Study on Evaluation of Audience’s Concentration in the

Classroom with Deep Convolutional Neural Networks,” In
International Conference on Teaching, Assessment and
Learning for Engineering (TALE 2014), pp.288-292, 2014.

[2] B. Baradwaj and S. Pal, “Mining Educational Data to
Analyze Students’ Performance,” International Journal of
Advanced Computer Science and Applications, Vol.2, No.6,
pp.63-69, 2011.

[3] S. Pal, “Analysis and Mining of Educational Data for
Predicting the Performance of Students,” International
Journal of Electronics Communication and Computer
Engineering, Vol.4, No.5, pp.1560-1565, 2013.

[4] K. Fujiwara, K. Fushida, H. Tamada, H. Igaki, and N.
Yoshida, “Why Novice Programmers Fall into a Pitfall?:
Coding Pattern Analysis in Programming Exercise,” In
International Workshop on Empirical Software Engineering
in Practice (IWESEP 2012), pp.46-51, 2012.

[5] M. Jadud, “Methods and Tools for Exploring Novice
Compilation Behavior,” In International Workshop on
Computing Education Research (ICER 2006), pp.73-84,
2006.

[6] C. Watson, F. W. B. Li, and J. L. Godwin, “Predicting
Performance in an Introductory Programming Course by
Logging and Analyzing Student Programming Behavior,” In
International Conference on Advanced Learning
Technologies (ICALT 2013), pp.319-323, 2013.

[7] A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen,
“Exploring Machine Learning Methods to Automatically
Identify Students in Need of Assistance,” In Annual
International Conference on International Computing
Education Research (ICER 2015), pp.121-130, 2015.

[8] P. Blikstein, “Using Learning Analytics to Assess Students’
Behavior in Open-ended Programming Tasks,” In
International Conference on Learning Analytics and
Knowledge (LAK 2011), pp.110-116, 2011.

[9] M. Ben-Ari, “Constructivism in computer science education,”
Journal of Computers in Mathematics and Science Teaching,
Vol.20, No.6, pp.45-73, 2001.

