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ABSTRACT 
Classifying student’s situation helps teachers to improve 
educational effect. In this paper, authors propose two metrics to 
classify the student's "random correction." Random Correction is 
an action that source code correction without understanding the 
exercise contents. We select a programming course with Online 
Judge System as a target, then analyze the characteristics of 
random correction from recorded snapshots. The result of the 
experiment showed that students who cannot reach perfect score 
have high value of both metrics; 1) a degree of imbalance 
corrections between source code lines, 2) the number of submitted 
revisions.  
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1. INTRODUCTION 
Classifying student’s situation helps improve educational effect in 
various classes. Several studies have classified student’s situation 
in course [1, 2, 3]. Also many studies classify student’s situation 
in programming course with snapshots [4, 5, 6, 7, 8]. Snapshot is 
a set of the program state contains source code, date of 
create/update, errors and so on. Existing studies grasp student who 
falls “pitfall” during a course from the snapshots. In this paper, 
authors target programming course with Online Judge System 
(OJS) to classify students who need teacher’s assistance.  
OJS is a system designed for evaluation of source code submitted 
by system users. The system compiles, executes and scores source 
code automatically based on the execution result. Students is 

notified their source code’s score immediately after the 
submission of the code. OJS operates with (or as a plugin of) 
Learning Management System (LMS), submits the source code to 
prepared exercises, and student learns by receiving score. 
In programming course without OJS, students submit the source 
code only once and cannot see the score, therefore the students 
cannot realize the source code is not fulfill the requirement. 
Conversely in programming course with OJS, students know the 
latest submission is not fulfill the requirements immediately. 
Therefore they can try to correct the error until the source code 
fulfill the requirements. 
In this paper, we aim to classify "random correction" which is 
observed in programming course with OJS. In the programming 
course with OJS, students repeatedly submit source code until the 
requirements are fulfilled (i.e. they obtain the perfect score.) 
However, some students attempt to obtain perfect score by correct 
the source code repeatedly and randomly. Fulfill the exercise 
requirements with random correction disturb the student 
understandings for new syntax and/or algorithm. We propose two 
metrics to classify the random correction from the edit history of 
source code. Classification of random correction allows teachers 
encourage the student to understand their errors or lecture 
contents. 
 

2. RELATED WORKS 
Fujiwara et al. analyzed novice programmer’s source code edit 
history recorded during programming exercises in two 
viewpoints: 1) heuristic analysis by skilled programmers and 2) 
Levenshtein distance at the token level source code based on 
lexical analysis [4]. As a result, authors found several patterns in 
novice behavior while they falls pitfalls, i.e. novices edit a code 
snippet that unrelated to the content of the exercise. Authors also 
found fluctuation of edit distance will denote the situation that 
novice is in pitfalls. 

Jadud et al. proposed a method to classify behaviors of error 
creation and correction during programming lectures for novices 
[5]. The method uses Error Quotient (EQ) which is calculated by 
the number of errors creation and correction. The research result 
shows two significant negative correlations: between EQ and 
exercise scores, and between EQ and grade of a lecture exam. 
Watson et al. proposed modified EQ metrics Watwin, that 
consider how much time student think for errors [6]. Ahadi et al. 
classify students with machine learning based on EQ and Watwin 
[7].  
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Blikstein et al. analyzed the situation and behavior of the students 
in the open-ended programming tasks. Blikstein calculated the 
number of compiles, the size of the source code, the number of 
compile success/failure, etc. from the snapshot [8].  

Our research targets a programming course with OJS, whereas the 
previous studies intended to a programming course without OJS. 
Our research also differs from previous studies in that we focus on 
random correction as a classification targets. 

 

3. PREPARATION 
3.1 Programming Course with OJS 
Target lecture is “programming 1” for novice students in our 
college: Programming exercise follow teacher’s lecture about a 
study-unit, such as “for” statement or array data. Each student 
edits a source code at online IDE (Integrated Development 
Environment) then submits to OJS. OJS compiles and executes 
the submitted source code and judges whether it matches the test 
case prepared by the teacher. A test case is a set of an input and 
expected output for testing whether the created program satisfies 
the requirements. OJS calculates the score by the following 
formula according to the number of the matching output. 

𝑠𝑐𝑜𝑟𝑒 =
#Matches	of	test	cases	

#Test	cases ∗ 	100	[points]								(1) 

The system displays the judge result including score, 
correct/incorrect of each test case, and/or compile error and 
runtime error. The student repeatedly corrects and submits the 
source code until the score reaches 100 points (perfect score) or 
the time limit is come. The all source code is recorded as a 
revision with the submission date, time, and score. 

3.2 Random Correction 
We define "random correction" as an action that source code 
correction without understanding the exercise contents. Figure 1 
shows an example of random correction. The figure shows an edit 
history of a certain student in a certain task. Each square describes 
code snippet at each revisions. The student submitted a source 
code twenty times within five minutes from first revision. The 
student corrects only the argument of the print statement through 
the all revisions. The student is considered to change the 
statement without any consideration for cause of the error because 
the student applied the same correction pattern in Revision 2 and 
Revision 6. Students who make a random correction may tend to 
apply their correction pattern multiple times to a particular line 
which is considered to be the cause of the error. As an ideal 
condition, students should consider and investigate the cause of 
point-reduction (or errors) to understand their misunderstandings. 
However, if the student reach a right answer by random correction, 
they finish the exercise without understanding the specifications 
and algorithms of the given program, the newly learned syntax, 
and so on.  
Also non-novice programmers make random corrections during 
their programming. The non-novice programmer tries endless 
debugging and see what happens [9]. Ben-Ari et al. defines such 
behavior as bricolage and states that it is inefficient to iterate 
source code correction without considering the cause of the error. 
Classification of random correction during exercise allows 
teachers to encourage the students to understand the study-units. 

4. PROPOSED METRICS 
We propose two metrics to classify random correction activity 
from student’s source code edit histories. The classification helps 
teachers to support student understandings. The metrics calculated 
based on the following two hypotheses for random correction in 
certain time period 𝑡. In this paper, we uses elapsed time from 
first revision of each student in each exercise as 𝑡. 

 
𝐹𝑟𝑒𝑞(𝑡) is a degree of imbalance corrections between source code 
lines. A student who makes a random correction may tend to 
apply his/her correction pattern multiple times to a particular line 
which is considered as a cause of the error: that is, the student 
correct a single line repeatedly (hypothesis H1.) To calculate the 
metric, we assign ID to each line of the source code (Figure 2.) 
When a new line is added at any revision, a new ID is assigned to 
the line. 𝐹𝑟𝑒𝑞(𝑡) is a variance which calculated from the number 
of corrections at each 𝐼𝐷 = {𝑖𝑑E, 𝑖𝑑G,⋯ , 𝑖𝑑I,⋯ , 𝑖𝑑J}.  

𝐹𝑟𝑒𝑞(𝑡) =
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Here, 𝑡 is the elapsed time from first revision, 𝑐I is the number of 
corrections at 𝑖𝑑I, 𝑠 and	𝜇 are calculated from following formulas. 
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We suppose that 𝐹𝑟𝑒𝑞(𝑡) tends to high by random correction. 

H1: Fix same code line frequently  

H2: Correct and/or compile source code frequently 

Figure 1. An example of Random Correction 
 
. 

Figure 2. Line ID Assign 
 



𝑅𝑒𝑣𝑠(𝑡) is the number of revisions submitted within 𝑡 minutes 
from first revision. When students make a random correction, they 
tends to apply their correction pattern multiple times to a 
particular line which is considered as the cause of the error. 
Therefore, the number of corrections and compilations within a 
time increases (hypothesis H2.) 

5. EXPERIMENTS
This section shows an experiment result to evaluate the 
effectiveness of two metrics, 𝐹𝑟𝑒𝑞(𝑡) and 𝑅𝑒𝑣𝑠(𝑡).  

5.1 Dataset 
We uses OJS logs which is collected at programming lecture in 
our college as a dataset. The course is a 90-minutes lecture of Java 
programming basics for novice students with exercise. Course 
teacher makes the exercise, then collects/evaluates the student 
submissions through CodeRunner which provides OJS functions 
to Moodle Learning Management System (LMS). CodeRunner 
records the source code submitted by the students with the 
assignment ID, student ID, revision number, submission date, and 
score.	In addition, students who obtain perfect score in first 
revision or submit once (i.e. 𝑅𝑒𝑣𝑠(𝑡) 	= 	1) are excluded from 
analysis because 𝐹𝑟𝑒𝑞(𝑡) can not be calculated if 𝑅𝑒𝑣𝑠(𝑡) 	= 	1. 
In this paper, we conduct experiments on 1,474 source codes (11 
exercises, 227 people) collected from June 21 to September 1, 
2017. 

5.2 Evaluation 
We focus on the change in the score of the first revision for each 
exercise by each student, 𝑠𝑐𝑜𝑟𝑒E, and the score of latest revision 
within 𝑡, 𝑠𝑐𝑜𝑟𝑒(𝑡). In the programming lecture with OJS, students 
who reach the perfect score (100) seldom make random correction 
because they already know how to correct source code. Students 
who reach 1-99 points revision after several 0 point revisions 
grasp the part of the code that should be correct via previous 
revisions. After the 1-99 points revision, some of the students find 
the cause of the error, then reach perfect score in a few revisions. 
On the other hand, some of them make random correction without 
thinking about the cause of error, hence these students stay at 1-99 
points in following revisions. Also, students who stays zero points 
cannot even grasp where to modify source code. In this paper, 
each student is classified as two groups from 𝑠𝑐𝑜𝑟𝑒E: 𝑠𝑐𝑜𝑟𝑒E = 0 
and 1 ≤ 𝑠𝑐𝑜𝑟𝑒E ≤ 99. Also the same students are classified as 
three groups from 𝑠𝑐𝑜𝑟𝑒(𝑡): 𝑠𝑐𝑜𝑟𝑒(𝑡) = 0, 1 ≤ 𝑠𝑐𝑜𝑟𝑒(𝑡) ≤ 99, 
and 𝑠𝑐𝑜𝑟𝑒(𝑡) = 100. Figure 3 shows six groups which is divided 
from different score transitions through 𝑠𝑐𝑜𝑟𝑒E to 𝑠𝑐𝑜𝑟𝑒(𝑡). Here, 
𝑆(Z,[\]) means the score of student’s first revision is 0, then the 
score changes to the range 1-99 at latest revision within the time 𝑡.  
We evaluate a difference of 𝐹𝑟𝑒𝑞(𝑡) and 𝑅𝑒𝑣𝑠(𝑡) among groups 

to understand whether these metrics relate with scores changes. In 
this paper, 𝑆([\],Z), 𝑆([\],[\]), and 𝑆([\],EZZ) are excluded from 
the analysis since a lack the number of data. We aim to classify 
random corrections during exercise, hence early detection from 
first revision is required. In this paper, we use 40 minutes as the 
maximum of 𝑡 and calculate each metrics and score in every 10 
minute for analysis. 

5.3 Results and Discussions 
Figure 4 and 5 shows the average values of 𝐹𝑟𝑒𝑞(𝑡)  and 
𝑅𝑒𝑣𝑠(𝑡)	with the results of the Welch's t-test at 𝑡	 = 10, 20, 30 
and 40, respectively. As shown in Figure 4, 𝐹𝑟𝑒𝑞(𝑡) of 𝑆(Z,EZZ) is 
the highest in all 𝑡, and significant difference with 𝑆(Z,Z). Also the 
smaller 𝐹𝑟𝑒𝑞(𝑡) was observed when the 𝑡  is increased at 𝑆(Z,Z) 
and 𝑆(Z,EZZ). Figure 5 shows 𝑅𝑒𝑣𝑠(𝑡) is higher in the order of 
𝑆(Z,[\]) , 𝑆(Z,Z) , 𝑆(Z,EZZ) ; and 𝑆(Z,Z)  is significantly higher than 
𝑆(Z,EZZ) at all 𝑡. In all groups, 𝑅𝑒𝑣𝑠(𝑡) increases as 𝑡 increases. 

The results showed the 𝑆(Z,EZZ) group has the highest 𝐹𝑟𝑒𝑞(𝑡) and 
the lowest 𝑅𝑒𝑣𝑠(𝑡) compared with other groups. This indicates 
that the students in the 𝑆(Z,EZZ)  group have reached correct 

Figure 3. Six Group based on 𝒔𝒄𝒐𝒓𝒆𝟏 and 𝒔𝒄𝒐𝒓𝒆(𝒕) 

Figure 4. Average Value of 𝑭𝒓𝒆𝒒(𝒕)  (N=206) 

Figure 5. Average Value of 𝑹𝒆𝒗𝒔(𝒕)  (N=206) 



answers by correcting the fewer lines within the several revisions. 
The students seemed to understand the subjects of the exercise 
and/or the cause of the error, hence the student could correct with 
a few modification. Such correction pattern may cause from a 
strict scoring method by the OJS. OJS evaluates source code by 
matching the characters between the execution results and the test 
case. Therefore, even if the algorithm of the submission is correct 
to an assignment, OJS judges the code as incorrect when the 
format of output (e.g. number of blanks and the letters’ 
uppercase/lowercase) are different. We found multiple cases of 
the correction pattern in students’ edit history such as source code 
outputs "Output: 0" or "OutPut: 0" for correct output "OutPut:0". 
Also, the students corrected these errors in several revisions, and 
reached to the correct answer. 

In contrast, 𝑆(Z,Z) group has a significantly higher 𝑅𝑒𝑣𝑠(𝑡) and 
lower 𝐹𝑟𝑒𝑞(𝑡) compared with 𝑆(Z,EZZ) group. This indicates that 
the students in the 𝑆(Z,Z) group corrects a wide range of source 
code with many revisions, however they cannot reach the correct 
answer. Figure 6 shows a edit history of a student in 𝑆(Z,Z) group. 
The student change a wide range of the source code and occurs 
multiple compile error. These edit pattern shows the student has 
less understanding of errors, and try to correct the code by random 
correction. Therefore the lower 𝐹𝑟𝑒𝑞(𝑡) may useful for random 
correction detection. 

𝑅𝑒𝑣𝑠(𝑡) of the 𝑆(Z,[\])	group is higher than the other two groups 
and 𝐹𝑟𝑒𝑞(𝑡) is higher than 𝑆(Z,Z). From these results, students of 
𝑆(Z,[\])  group partially reached correct answers by correcting 
specific lines through many revisions compared to the students in 
the 𝑆(Z,Z)  group. The result shows the 𝑆(Z,[\])  group performs 
random correction as defined in this paper (H1 and H2 in Section 
4.) Figure 7 shows an edit history of the student in the 𝑆(Z,[\]) 

group. The student stay 0 score from first revision to revision 5, 
then get 25 score at revision 6. After the revision 8, the student 
submits source code with small modification five times in four 
minutes, however the score is still low. The each modification 
shows the student has less understanding about the cause of low 
score, and try to correct the code by random correction. 

The result also shows the differences between 𝑆(Z,Z) and 𝑆(Z,EZZ) 
groups. In both groups, the higher 𝑡  value means the lower 
𝐹𝑟𝑒𝑞(𝑡), and the higher 𝑅𝑒𝑣𝑠(𝑡), however the 𝑆(Z,Z) group has a 
stronger tendency. The number of student in 𝑆(Z,Z) decreases at 
later 𝑡, because some student reach the correct source code during 
the modifications, then move to the 𝑆(Z,EZZ). Hence the student in 
𝑆(Z,Z) at later 𝑡 means the student stays non-perfect score in the 
long time. The lower 𝐹𝑟𝑒𝑞(𝑡) and the higher 𝑅𝑒𝑣𝑠(𝑡) of 𝑆(Z,Z) in 
later 𝑡 indicates that the student modifies source code in a wider 
range through many revisions, that means the student cannot 

Figure 7. Example of 𝑺(𝟎,𝒎𝒊𝒅) Student’s Edit History Figure 6. Example of 𝑺(𝟎,𝟎) Student’s Edit History 



understand the cause of low scores. The result suggests that the 
metrics is useful indicator to predict future score of each student 
based on their source code edit history. Similar tendency was 
observed at 𝑅𝑒𝑣𝑠(𝑡) in 𝑆(Z,[\]) (the higher value in the later 𝑡.) 
However the number of student at each 𝑡 is small, hence the future 
research is required.  

 

6. CONCLUSION 
In this paper, we propose metrics to classify random correction 
from the snapshot of the source code submitted to the OJS. 
𝐹𝑟𝑒𝑞(𝑡) represents a degree of imbalance corrections between 
source code lines, and 𝑅𝑒𝑣𝑠(𝑡)  represents the number of 
submitted revisions. The result of the experiment shows that 
students who cannot reach perfect score had high value of both 
metrics. Also the snap shots of non-perfect score students describe 
that they correct the source code randomly. We think distinction 
of random correction from student activity during programming 
exercise increases the chance of efficient coaching. Dynamic 
detection of random correction by these metrics will useful 
functional enhancement of OJS to efficient teaching.  

As a future work, time series analysis of metrics is an important 
work for more detail understanding of random correction. The 
result of snap shot analysis suggests that student who takes a non-
zero (and non-perfect) scored submission after the continued zero-
point submissions start a random correction. That is, even students 
who make a random corrections did not such correction method 
all the time. They identifies the code snippet which need to 
modify via OJS output, then starts “tries often enough” method to 
get a perfect score. Comparing the metrics before and after the 
score change will clarify the change of student activity.  

Classification of random corrections using machine learning is 
also a future work. OJS with auto-classification of random 
correction (or other student activities) improves the education 
effect of e-class without teachers.  In this paper, we analyzed the 
metrics and score at the point in the time 𝑡 elapsed from the first 
revision. Score estimation at after the certain time (e.g. 𝑡 + 30) 
from current metrics is an interesting work. 
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