
システム創成工学専攻
情報システムコース

Department of Systems Innovation

Advanced Information System Course

令和元年度 専攻科特別研究論文

脳波と視線の同時計測による
プログラム理解状態の把握

Synchronized Analysis of Eye Movement and EEG

during Program Comprehension

指導教員名 上野 秀剛 准教授

論文提出者名 石田　豊実

独立行政法人 国立高等専門学校機構

奈良工業高等専門学校 専攻科
National Institute of Technology, Nara College

Faculty of Advanced Engineering

脳波と視線の同時計測による
プログラム理解状態の把握

Synchronized Analysis of Eye Movement and EEG
during Program Comprehension

石田　豊実
Ishida Toyomi

独立行政法人 国立高等専門学校機構

奈良工業高等専門学校 専攻科 システム創成工学専攻 情報システムコース

大和郡山市矢田町 22番地（〒 639-1080）

National Institute of Technology, Nara College, Faculty of Advanced Engineering

22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan

Abstract: Appropriate support for program comprehension contributes to efficient software

development. Several previous studies used bio-information such as brain activity to classify

the inner-state of programmer without interruption. In this paper, we measure programmer’s

brain waves and eye movement simultaneously while they comprehend the source code. In the

experiment, we analyze difference of time-series brain wave features between success/failure

for source code comprehension task. The result of the experiment showed the participants

who success the source code comprehension significantly increased power spectrum of α wave

with the time passage. Also the eye movements of the succeed participants shift their focus

of fixation from specification to source code in early time. Synchronized analysis of failed

programmer shows similar but slow pattern of EEG and eye movement changes compared

with succeed programmer.

Keywords: Program comprehension, EEG, Eye movement

i

関連業績リスト

1. 石田豊実，上野秀剛: “プログラム理解時における脳波特徴の把握を目的とした時

系列分析の試み”，第 200 回ソフトウェア工学研究会，Vol.200， No.2， pp.1-8，

(2018).

2. Toyomi Ishida，Hidetake Uwano: “Time Series Analysis of Programmer’S

Eeg for Debug State Classification”，In the 5th Edition of the Programming

Experience Workshop　 (PX 2019).

3. Toyomi Ishida，Hidetake Uwano: “Synchronized Analysis of Eye Movement

and Eeg during Program Comprehension”，In Eye Movements in Programming

2019 (EMIP 2019).

iii

目次

1. Introduction 1

2. Related Work 5

3. EEG and Eye Movements 7

3.1 EEG . 7

3.2 Eye Movement . 9

4. Experiment 12

4.1 Environment . 12

4.2 Task . 14

4.3 Analysis . 15

5. Result and Discussion 18

6. Conclusion and Future Work 22

7. Additional Analysis in Process 23

7.1 Background . 23

7.2 Analysis using Machine Learning . 24

References 26

References . 26

iv

図目次

1.1 Classification by combining EEG and eye movement 3

3.1 International 10-20 system of electrode placement 8

3.2 Classifying of comprehension result using EEG 9

3.3 Division of comprehension process using eye movement 10

4.1 Appearance during measuring brainwave 13

4.2 Example of tab switching history . 16

5.1 Eye movement and EEG in success group 19

5.2 Eye movement and EEG in failure group 20

v

表目次

4.1 Tasks used in the experiment . 15

5.1 Success and failure in the experiment 18

vi

1. Introduction

Appropriate support for program comprehension contributes to efficient software

implementation and debugging. Classification of programmer’s states during com-

prehension enables us to real-time support based on their situations; e.g. visualiza-

tion of code snippet that uses a certain variable the programmer has an attention.

Many studies proposed process model of program understanding during programming

and/or debugging.

Mayrhauser and Vans compared six program comprehension models [1]. Xu [2] clas-

sify activities during program comprehension into six processes (knowledge, compre-

hension, application, analysis, synthesis and evaluation) based on Bloom’s taxonomy,

one of the intellectual activity classification [3]. These studies organize a set of sub-

processes in program comprehension process from view point of logical architecture.

Our long term research goal is to empirically analyze the program comprehension

process using bio information measurement. Bio information is a metric which is

measured from human body and have relation with thinking and psychological state.

Program comprehension is mainly performed mentally, so it is hard to understand

their “state of understanding” from visual observation. In Software Engineering,

many studies use bio information to analyze programmers’ thinking and psychological

state [4, 5].

Program comprehension requires understanding of operation in target source code

(how it works) and requirement specification of the program (what to do). Under-

standing the operation of source code involves comprehending process flow, variables

role, method functionality, the syntax of programming language, API architecture,

and other miscellaneous activities.The understandings are accomplished by reading

each line of the source code and the requirement specifications, then lead to the un-

1

derstanding of block, method, class and entire program. In this paper, we define a

“micro process” as an activity to line-wise comprehension of source code and other

software documents, such as variable (and method) declaration, calculation, condi-

tional expression, method call, requirement explanation, etc. Programmers during a

comprehension process perform a continuous set of micro processes to lines of source

code and other documents, then understand a larger architecture such as process flow

and caller-callee relationship by combining the understandings from micro processes.

Therefore, line-wise analysis allows us to fine-grained understandings of program-

mer’s comprehension process; Such knowledge contributes a real-time assist of the

programmer based on a state of understanding.

Micro processes during program comprehension change frequently based on a lit-

erature in lines. These different micro processes activate different brain functionality

(such as syntax recognition, calculation, memorization) in different intensities. In

this paper, authors measure EEG (electroencephalogram, i.e. brain waves) during

the comprehension process. Frequency bands of EEG, such as α wave and β wave re-

flect mental (emotional and intellectual) states and the brain activity [6]. We assume

the brain activities in each micro process are reflected rapidly to the EEG, because

EEG has a high time resolution. Therefore, time series changes of programmer’s EEG

may synchronize with their reading of lines.

Eye movements measurement is well used technique to analyze the comprehension

process in programming [7, 8, 9]. Programmers read source code based on their

comprehension strategies, hence the strategies are reflected in their eye movements.

That is, eye movements reflect how programmers try to understand the source code

through sequence of micro processes, while the EEG reflects the result of each micro

process. For example, we can support appropriately for programmers if we divide

EEG by eye movement as Fig.1.1.

2

Process2 Process3 Process4Process１

Time [s]

プログラム理解中…
Method1
Comprehension

Result

Main
Compreh.

Result

Bug
Judge

Result

Spec.
Compreh.

Result

Not complete…

Support !

α spectrum

Fig.1.1: Classification by combining EEG and eye movement

In this paper, we measure programmer’s EEG and eye movements during compre-

hension process simultaneously. We evaluate whether the EEG and the eye movements

reflect the process of comprehension or not from pilot experiment. As mentioned

above, time series changes of programmer’s EEG may synchronize with their read-

ing during comprehension. Our pilot experiment examines change of EEG and eye

movements occur simultaneously. Also a power spectrum of EEG and eye movement

are compared between who succeeds program understanding task and who fails. We

examine two research questions from an experiment:

• RQ1: Are change of EEG and eye movement during program comprehension

synchronize with any comprehension process?

3

• RQ2: Are time series changes of EEG and eye movement different between

success and failure of understanding task?

4

2. Related Work

Some bio-information is used for quantitative analysis of program comprehension

processes in prior works. Siegmund et al. investigated the activation at each brain

portion during program comprehension by using fMRI [10, 5]. The fMRI is a device

that measures brain activity from blood flow changes in a human head. In the exper-

iment, participants read short source code snippets for two types of error detection,

1) syntax error and 2) logic error. As the results show participants who understand

the source code had activated brain regions that related to problem solving, memo-

rization, and sentence comprehension.

The fMRI has a high spatial resolution compares with other brain measurement

devices such as EEG, and therefore is suitable for understanding which brain region

is activated in program comprehension. On the other hand, the fMRI is not suitable

for measurement in practical environment because the device requires participants to

lie on the device.

The combination of EEG and eye movements is well used in research of program

comprehension. Fritz et al. predicts the programmer’s states and task characteris-

tics using machine learning with combination of several bio-information [11]. Their

method predicts the subjective difficulties (high and low) from EEG (α, β, and other

Frequency bands), eye movements (pupil size, saccades, and fixations), and EDA (skin

conductance). Zuger et al. predicts the programmer’s condition which good for inter-

ruption [8]. Muller et al. builds a psychological model for estimate the programmer’s

emotion (concentration and happiness) [9].

These researches show that EEG and eye movements are useful metrics for analysis

and prediction for programmer’s states. In this paper, authors analyze the difference

of brainwave features during program comprehension between who succeed to com-

5

prehend and who fail. Especially we focus on time series analysis of EEG; change of α

wave in comprehension task is analyzed. Both EEG and eye movements have a high

time resolution, hence the combined analysis is suitable method to understand micro

processes in program comprehension. Also, devices that record the EEG and the eye

movements are easy to apply for programmers during their working or students in

class compared with fMRI and other brain activity measurement devices.

6

3. EEG and Eye Movements

3.1 EEG

An EEG is an electrical activity that arises from brain and recorded through elec-

trodes placed on the scalp. Brain electric potential is measured as difference of two

electrodes [12]. Each electrode is placed on a point specified by the International

10-20 system shown in Figure 3.1 [13]. The International 10-20 system designates 19

electrode placements except the electrodes defining ground potential.

The purpose of measurement determines place and number of electrodes. There are

two electroencephalographic derivation methods; standard and bipolar method. The

standard method is used when two electrodes are placed near each other. The bipolar

method is used to measure the difference of two specific positions and remove the

irrelevant background components. EEG waveforms are generally classified according

to their frequency [12]. The frequency is calculated by FFT (Fast Fourier Transform),

or STFT (Short Time Fourier Transform). The familiar classification of waveforms is

following bandwidths.

• δ wave: 0.1 - 4 Hz

• θ wave: 4 - 8 Hz

• α wave: 8 - 13 Hz

• β wave: 13 - 30 Hz

• γ wave: 30 - 100 Hz

EEG frequency differs depending on different behavior and mental conditions of

the brain [6]. For example, α wave appears strongly when a person is relaxed or

concentrating. When the person is thinking or stressed, β wave becomes stronger

7

Fig.3.1: International 10-20 system of electrode placement

and α wave is weakened relatively. The EEG is also used to evaluate mental (not

emotional but intellectual) activities [11, 8]. In this paper, we use the EEG as metric to

classify programmers who understand a program behavior and/or succeed to judge the

program contains a bug. For example, we can classify success/failure of comprehension

by analyzing programmers’ EEG during comprehension as Fig. 3.2.

8

α spectrum

little increased

much increased
α pectrum

Comprehended!

Not
comprehended...

Fig.3.2: Classifying of comprehension result using EEG

3.2 Eye Movement

Eye movement is recorded as a series of the coordination (x and y) on display that

calculated from the eyeball movement [14]. Analyzing the eye movements shows us

where the participant is looking at and how long each gaze takes place. Eye movement

is used to analyze the difference between novices and experts, especially in cognitive

engineering. The eye movement analysis is also used to program comprehension and

debugging research. Behroozi et al. distinguish who understands source code via eye

movements analysis [15]. Busjahn et al. found differences in eye movement while

reading source code between experts and novices [16]. Software documents such as

9

Spec.

Time[s]

Process2
Method1

M
ain

Process 4
Comparison
spec. and method1

Process1
Spec.

Source code

１
２…

１
２…

M
thod

1

M
ain １

２…
Row

Comprehending
spec.

Comparing spec.
and method1

Fig.3.3: Division of comprehension process using eye movement

requirement specifications or source code consist of lines. Developers read each line to

comprehend entire document and correspondence between documents. The analysis

of eye movements in software engineering research enabled us to understand the line-

wise analysis of software reading/comprehension process. For example, we can divide

comprehension into each process by analyzing programmers’ eye movement during

comprehension as Fig. 3.3.

On the other hand, eye movement analysis does not allowed to know the states

of understandings. In general, the longer gaze time to one line means that the line

is important for entire understanding or difficult to understand meaning of the line.

Eye movement analysis can not distinguish them because the eye movement hardly

10

contains “result” of the reading; the programmer understood mean of the line or not.

In this research, we combine the eye movement and time series EEG analysis for

fine-grained understanding of program comprehension. We believe the combination

tells us which part of source code is read by programmer and level of the program-

mer’s understanding to the part, e.g. “She understands variable x stores result of

calculation, but not sure how the calculation is work.”

11

4. Experiment

Five undergraduate students in the information engineering department of our col-

lege (All male, aged from 19 to 20) participated in this experiment. All students fin-

ished basic course of Java programming at least. Each participant reads Java source

code as the debugging tasks. During the task, we record EEG to classify whether

participants succeeded or failed tasks.

4.1 Environment

This experiment is performed in a quiet room with only one participants and two

experimenters. In order to suppress artifacts due to body movements, the participants

sit on a chair with armrests and footrests, and are instructed to reduce their body

movement as much as possible.

We use the NeXus-10 MARK II manufactured by Nanotech Image Ltd. as our EEG

measurement device. The device measures EEG with 256Hz sampling frequency, and

a measured data is transferred to a PC via Bluetooth. Electrodes are located using

the standard electrode derivation method. The ground electrode is located at right

ear (A2), standard electrode is located at left ear (A1) and measurement electrode is

located at back of the head (Pz), which same allocation of our previous study that

distinguish whether programmer found an implementation strategy from requirement

specification [17]. Figure 4.1 shows appearance of the subject during this experiment.

We use Eye Tracker 4C manufactured by Tobii Ltd. as eye movement measurement

device. The device is low cost (less than 200 USD), non-invasive and screen-based eye

tracker with 90Hz data acquisition frequency. Several research used the device for eye

movement analysis [18], developers’ emotion estimation [19], and virtual keyboard

12

Fig.4.1: Appearance during measuring brainwave

application [20]. The device is installed to task presentation PC, the recorded eye

movements are stored to CSV file. At the beginning of the experiment, participant’s

eye movement is calibrated using setting tool distributed by Tobii Ltd.

We develop the task presentation tool for the experiment. The tool is C# GUI

application with three tabbed-windows to display the task materials explained in

section 4.2. The display size and resolution for the task presentation are 21.3-inch,

1920 × 1080. Each material displayed in the tab has a 50 pixel height at each line.

Participants click the tab to change the display materials in any time. The tool also

records synchronized eye movement and operation (tab switching) for analysis. We

use one PC for the EEG device control and recording. Eye tracker control and the

experiment tool are ran by another PC. We synchronize EEG and eye movement data

using signals which manually input at the start and end of each task.

13

4.2 Task

Participants read three task materials during the task, 1) specification, 2) source

code and 3) question. Table 4.1 shows the list of tasks in the experiment. Specification

is a short sentence that explain the purpose of the program written in Japanese.

Source code is a written in Java with single class in one file.

The participants answer a question that confirms s/he comprehends the program

behavior correctly; i.e. question: “What is the value of variable x at the sixth line

in the second loop?” and answer: “x is 7.” The question is displayed with the speci-

fication and the source code at display, the participant answer the question verbally.

The definition of success and failure in understanding step is as follow:

• success: A participant answers question within a time limit (2 minutes 30

seconds) and the answer match with prepared one.

• failure: An answer of a participant is not match with prepared one, or no

answer within the time limit.

The question, specification, and source code are displayed separately via experiment

tool explained in section 4.1. Participants can change the displayed materials by click

the tabs.

In this paper, we classify the task results into two groups, success and failure,

hence it is preferred the number of each group is similar. To achieve this, eight difficult

tasks and eight easy tasks are prepared. The source code of the easy task consists of

only the main method, single loop block, and single conditional branch; participants

may success the task within time limit. The source code of the difficult task uses a

complex algorithm which has multiple methods, recursive structure; participants may

fail the task or exceed the time limit. The order of each task is counterbalanced to

minimize the effect of task order.

14

Table 4.1: Tasks used in the experiment

difficulty specification

1

easy

Calculate factorial

2 Search maximum number

3 Judge prime number

4 Search median number

5 Calculate power of number

6 Swap two numbers

7 Judge string match

8 Output reversed string

9

difficult

Tower of Hanoi

10 Count route combination

11 List-up permutation

12 List-up combinations by recursion

13 Count the combination of coins

14 List-up string combination

15 Predict clouds movement

16 Calculate G.C.D. and L.C.M.

4.3 Analysis

EEG in each task is extracted to calculate power spectrum of α wave. Each EEG

is divided to 0.2 seconds length, then calculated power spectrum by STFT. In this

paper, we simplify the analysis by calculate the average of power spectrum in each

five seconds time range from start of the task. The extracted powers include a large

individual difference. Therefore, each power spectrum is normalized by the median

value of each task. The normalized value means the difference of powers at each time

zone during a task.

In this paper, the fixation ratio of each material is calculated by using tab switching

15

� �
Time, Task Name, Tab Name

18:04:07.01, task03, specification
...

18:04:12.22, task03, specification

18:04:12.23, task03, source code
...

18:04:22.99, task03, source code

18:04:23.03, task03, question
...

18:04:30.80, task03, question
...
 	

Fig.4.2: Example of tab switching history

history which is outputted by the task presentation tool. We can identify the material

which the participant was reading because the task presentation tool displays each

matrial to tabs overlaped placed. Figure 4.2 shows an example of tab switching

history. We divide lines of the history to every five seconds in each task, then calculate

the percentage of fixation time to each material.

After the above process, EEG and fixation ratio to each task material are combined.

Both data have a five second intervals for each task, so the data is displayed in parallel.

First, we examine whether power spectrum of α wave and fixation ratio for task

materials change simultaneously. To answer the task question correctly, participants

must understand the specification and behavior of the source code, then compute

the value of variable that designated by the question based on the understanding.

Participants read the each material during the understanding, hence the fixation ratio

to the target material becomes higher. Participants who succeed the understanding

of the material, the fixation ratio will shift to other materials. Here, we suppose that

the fixation ratio and EEG change simultaneously with the state of understanding to

task materials (RQ1).

16

Second, we compare success and failure group to examine that the change of

fixation ratio and EEG depend on task succeed/fail. Each group has different state of

understanding for task materials. Therefore, we suppose that the fixation ratio and

EEG which reflect participant’s comprehension depend on task succeed/fail (RQ2).

17

5. Result and Discussion

We obtained 80 data (16 tasks × 5 participants) as result of experiment, and every

data is used in the analysis. Large body movements and immediate answer (without

thinking) is not observed during the experiment. Table 5.1 shows the number of

success and failure at each step.

Figure 5.1 and Figure 5.2 show combination of EEG and fixation ratio for three

task materials in success and failure. At first, focus on fixation of success and

failure. These figure show the fixation ratio to specification is large at beginning of

task, then fixation ratio to the source code increases gradually in both group. After

that, fixation to the specification and question keep in some ratio, however allocation

rate is different between success and failure. Success group has a stable tendency

that fixation ratio for question is larger than specification except first two time range

(1-5 and 6-10). On the other hand, fixation ratio for specification and question is

almost same from 31-35 to 106-110 at failure group.

Secondly, we analyze EEG and Eye movement. In Figure 5.1, fixation ratio to the

source code reaches dominant (74.2%) at 16-20 seconds when the α wave in success

Table 5.1: Success and failure in the experiment

Participant ID success failure

1 10 6

2 6 10

3 9 7

4 11 5

5 11 5

18

Fig.5.1: Eye movement and EEG in success group

starts to increase. Then the fixation ratio for specification and question stay low, at

41-45 time range that EEG increased significantly from task start, 87% of fixation is

concentrated to source code; in contrast, only 3% for specification.

It is necessary for participants to comprehend the process of source code and a

content of question to answer a question (such as “what is the value if variable x

at sixth line in second loop?”) correctly. The comprehension of specification helps

participants to understand source code. Also the specification is displayed at the

start of each task; therefore, the participants read the specification at first, then shift

to the source code for clear understandings. The result of the synchronized analysis

suggests that the success group understand the specification in early time during task,

then proceed their source code comprehension without any difficulties; the successful

task progress appears to rapid increase of EEG (α wave).

The result of the failure group (figure 5.2) shows similar tendency with success;

fixation ratio to source code reaches dominant (76.6%) at 41-45 seconds when the α

19

Fig.5.2: Eye movement and EEG in failure group

wave starts to increase. At 106-110 seconds that EEG increased significantly from

task start, none of fixation for specification is observed.

Synchronized analysis of failure shows similar but more slowly change of EEG and

eye movement compared with success. Until the fixation ratio to source code reaches

75% (EEG start to increase in both group), it takes 15 seconds in success and 40

seconds in failure from the start of each task (2.67 times); time from the start of EEG

increment to significant increase is 26 seconds in success and 65 seconds in failure

(2.6 times). In this experiment, 52% of failure task is not completed within the time

limit. The result of the synchronized analysis suggests that the failure group cannot

understand the specification in early stage during task, then proceed their source code

comprehension without any clue from specification; the failure task progress appears

to slow increase of EEG (α wave).

Figure 5.2 shows that fixation ratio to specification and question changes at 106-

110; this is the same time range what EEG shows significant difference in failure.

After the time range, the fixation ratio to specification is lower than question. In

success, the fixation ratio to question always exceeds the ratio to the specification

20

except at the beginning of task. In this experiment, question ask the specific value

of a variable at certain state. It is difficult to understand what the question ask

without comprehension of specification and source code. Therefore, the higher fixation

ratio to question than specification means the participant thinks they understand the

specification. Same characteristic is observed at 106-110 seconds in failure, this may

describe some participants understand source code incorrectly, therefore fail to answer

the question.

• RQ1: EEG and fixation ratio to source code during program comprehension

increased with understand the specification.

• RQ2: Participants who success their understanding have an early increase of α

wave compared with participants who fail the understanding.

Therefore, we suppose that the fixation ratio and EEG which reflect participant’s

comprehension depend on task succeed/fail (RQ2).

21

6. Conclusion and Future Work

In this paper, we analyzed time series changes of eye movements and EEG during

program comprehension. Result of the experiment showed the fixation ratio and EEG

changed simultaneously with the comprehension of materials. The α wave started to

increase when the fixation to source code is dominant. The fixation ratio and EEG

which reflect participant’s comprehension depended on task succeed/fail. Synchro-

nized analysis of failure shows similar but slow pattern of EEG and eye movement

changes compared with success. Also, the result of the synchronized analysis suggests

that the failure group cannot understand the specification in early time during task,

then proceed their source code comprehension without any clue from specification;

the failure task progress appears to slow increase of EEG (α wave). These results

surpport our research question RQ1 and RQ2. Synchronized analysis of EEG and

eye movements has a possibility as an metric to detect a programmer who cannot

understand the program in seconds-scale.

One of our future work is analysis of line-wise eye movement. Time series analy-

sis of fixation ratio to each line in materials suit to combine with fine-grained EEG

for detailed micro process understandings. Labeling to each line based on charac-

teristics is another interest research theme. For example, each line of source code is

labeled from process type within the line such as variable declaration, calculation,

store of process result, method call/return, and condition evaluation. These labels

are useful characteristics for pattern mining or machine learning when combine with

brain activity measurement such as EEG because the difference characteristics in line

(or process-chain of code snippet) will lead the different brain activity. Additional

measurement of EEG from different place is also interest.

22

7. Additional Analysis in

Process

7.1 Background

We have demonstrated that the changes in EEG and eye movement data can be

synchronized during program comprehension tasks. Technically, subjects’ α spectrum

in EEG and attention rates on source code were increased in early phases if they

succeeded to comprehend a given code snippet while the changes were occurred lately

if they failed. Here we use the synchronized changes in EEG and eye moment data

to classify developers’ success/failure on program comprehension. More dynamic

and appropriate support might be enabled if the support system can be aware of

developers’ mental states from biometric data.

Several recent studies in software engineering domain have combined more light-

weight biometric sensors with machine learning techniques to classify mental states of

software developers[21]. Frits et al. trained a Naive Bayes classifier on three biometric

sensors involving EEG, electrodemal activity (EDA), and eye movements to predict

the difficulty of program comprehension tasks[11]. Müller et al. trained a decision tree

classifier on EEG, EDA, eye movements, and heart-related data to classify developers’

mental states (i.e. stuck or in flow, happy or frustrated) and resulted in around 70

percent classification accuracies[9]. Both of their results suggested that combinations

of two or more different biometric data could be useful to estimate developers’ mental

states or subjective difficulties.

Here we aim to estimate whether a subject succeeded to comprehend a code snippet

or not from EEG and eye-movement data that measured simultaneously. In particular,

we focus on their time courses and synchronized changes. Our combined analysis

23

would be suitable for understand micro processes of program comprehension since

the EEG and eye movements can be measured in high temporal resolutions. Further,

the devices are easy to apply real environments such as company working spaces and

classrooms for students.

7.2 Analysis using Machine Learning

The programmer concentrates his/her fixation to source code when the program-

mer try to comprehend source code. Then, the programmer’s α in EEG increases

continually after s/he tried to comprehend source code. After that, the programmer’s

α increases greatly when programmer have comprehended. Therefore, α and fixation

to source code should change as follows when programmers have comprehended suc-

cessfully. At first, α and fixation to source code should increase due to start of source

code comprehension. After that, α should increase greatly due to source code com-

prehension. The programmer’s α without comprehension also increases continually

after he/she tried to comprehend source code. After that, however, the programmer’s

α increases greatly greatly late or increase as same due to failure of comprehension.

Therefore, α and fixation to source code should change as follows when programmers

have not comprehended. At first, α and fixation to source code should increase due

to start of source code comprehension. After that, α should increase greatly late or

increase as same due to failure of comprehension.

Here, we classify programmers who comprehend successfully or not using machine

learning. As attribute, we use the time lag when programmer’s fixation to source

code increase and when programmer’s α increase.

24

Acknowledgment

これまで研究を進める当たって，様々なご指導とご助言を頂きました上野秀剛准教授に

深くお礼申し上げます．おかげさまで多くの研究会に参加でき，多くの経験を積むことが

できました．本科 5 年生から専攻科を修了するまでの 3 年間が充実できたのは先生のご

協力があってのことだと思っております．また，研究力向上セミナーにて松村教授，山口

賢准教授，市川嘉裕助教にご意見を頂いたことで，自身の研究に対して違った角度から見

つめなおすことができました．実験に参加して頂いた多くの方々には，負担の大きい実験

に 1時間強付き合っていただきました．この場を借りてお礼申し上げます．

なお，本研究は JSPS 科研費 JP16K00114 の助成を受けたものです．

25

References

[1] Mayrhauser, A. V. and Vans, A. M., ”Program comprehension during software

maintenance and evolution,” in Computer, Vol. 28, No. 8, pp. 44-55 (1995).

[2] Xu, S., ”A cognitive model for program comprehension,” In Proceedings of the

Third ACIS International Conference on Software Engineering Research, Man-

agement and Applications (SERA’05), pp. 392-398 (2005).

[3] Bloom, B. S., Engelhart, M. B., Furst, E. J., Hill, W. H. and Krathwohl, D.

R., ”Taxonomy of educational objectives. The classification of educational goals.

Handbook 1: Cognitive domain,” New York: Longmans Green (1956).

[4] Torii, K., Matsumoto, K., Nakakoji, K., Takada, Y., Takada, S., and Shima, K.,

”Ginger2: an environment for computer-aided empirical software engineering,” in

IEEE Transactions on Software Engineering, Vol. 25, No. 4, pp. 474-492 (1999).

[5] Siegmund, J., Peitek, N., Parnin, C., Apel, S., Hofmeister, J., Kastner, C., Begel,

A., Bethmann, A., and Brechmann, A., ”Measuring neural efficiency of program

comprehension,” In Proceedings of the 11th Joint Meeting on Foundations of

Software Engineering(ESEC/FSE), pp. 140-150 (2017).

[6] Birbaumer, N., Elbert, T., G M Canavan, A., Rockstroh, B., ”Slow potentials of

the cerebral cortex and behavior,” Physiological Reviews, Vol.70, pp. 1-41 (1990).

[7] Rodeghero, P., Liu, C., McBurney P. W., and McMillan, C., ”An eye-tracking

study of java programmers and application to source code summarization,” in

IEEE Transactions on Software Engineering, Vol.41, No.11, pp. 1038-1054 (2015).

[8] Zuger, M., and Fritz, T., ”Interruptibility of software developers and its predic-

tion using psycho-physiological sensors,” In Proceedings of 33rd Annual ACM

Conference on Human Factors in Computing Systems, pp. 2981-2990 (2015).

26

[9] Muller, S. C., and Fritz.T., ”Stuck and frustrated or in flow and happy: Sens-

ing developers’ emotions and progress,” In Proceedings of 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, Vol.1, pp. 688-

699 (2015).

[10] Siegmund, J., A. Brechmann, Apel, S., Kastner, C., Liebig, J., Leich, T., and

Saake, G., ”Toward measuring program comprehension with functional magnetic

resonance imaging,” In Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering (FSE’12), No.24 (2012).

[11] Fritz, T., Begel, A., Müller, S. C., Yigit-Elliott, S., Züger, M., ”Using psycho-

physiological measures to assess task difficulty in software development,” In Pro-

ceedings of the International Conference on Software Engineering (ICSE), pp.

402-413 (2014).

[12] Satheesh, Kumar, J., Bhuvaneswari, P., ”Analysis of electroencephalography

(EEG) signals and its categorization - A study,” In Proceedings of the Interna-

tional Conference on Modeling, Optimization and Computing (ICMOC), Vol.38,

pp. 2525-2536 (2012).

[13] Klem, GH, Luders, H, Jasper, HH, Elger, C., ”The ten-twenty electrode system

of the international federation,” The International Federation of Clinical Neuro-

physiology. Electroencephalography and clinical neurophysiology, Vol.52, pp. 3-6

(1999).

[14] Duchowski, A. T., ”Eye tracking methodology,” Springer (2006).

[15] Behroozi, M., Lui, A., Moore, I., Ford, D., and Parnin, C., ”Dazed: measuring

the cognitive load of solving technical interview problems at the whiteboard,”

In Proceedings of the International Conference on Software Engineering (ICSE),

pp. 93-96 (2018).

[16] Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C.,

Sharif, B., Tamm, S., ”Eye movements in code reading: Relaxing the linear

order,” In Proceedings of the 23rd International Conference on Program Com-

prehension (ICPC), pp. 255-265 (2015).

[17] Yamamoto, A., Uwano, H., and Ikutani, Y., ”Programmer’s electroencephalo-

gram who found implementation strategy,” In Proceedings of 4th International

27

Conference on Applied Computing & Information Technology (ACIT), pp. 164-

168 (2016).

[18] Sun, WT., Sheu, FR., and Tsai, MJ., ”Understanding inquiry-based searching

behaviors using scan path analysis: a pilot study,”. Innovative Technologies and

Learning. ICITL 2018. Lecture Notes in Computer Science, Vol. 11003 (2018).

[19] Girardi, D., Lanubile, F., Novielli, N., and Fucci, D., ”Sensing developers’ emo-

tions: The design of a replicated experiment,” In Proceedings of the 3rd Inter-

national Workshop on Emotion Awareness in Software Engineering (SEmotion),

pp. 51-54 (2018).

[20] Soundarajan, S., and Cecotti, H., ”A gaze-based virtual keyboard using a mouth

switch for command selection,” In Proceedings of the 40th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),

pp. 3334-3337 (2018).

[21] Lee, Seolhwa., Hooshyar, Danial., Ji, Hyesung., Nam, Kichun., Lim, Heuiseok.,

”Mining biometric data to predict programmer expertise and task difficulty,”

Cluster Computing, pp.1097-1107, (2018).

28

	1. Introduction
	2. Related Work
	3. EEG and Eye Movements
	3.1 EEG
	3.2 Eye Movement

	4. Experiment
	4.1 Environment
	4.2 Task
	4.3 Analysis

	5. Result and Discussion
	6. Conclusion and Future Work
	7. Additional Analysis in Process
	7.1 Background
	7.2 Analysis using Machine Learning

	References
	References

