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ABSTRACT
Program comprehension is one of the important cognitive pro-
cesses in software maintenance. The process typically involves di-
verse mental activities such as understanding of source code, li-
brary usages, and requirements. Systematic supports would be im-
proved if the supports can be aware of such fine-grained men-
tal activities during program comprehension. Here we aim to in-
vestigate whether biometric data can be varied according to such
mental activity classes and conduct an experiment with program
comprehension tasks involving multiple documents. As a result,
we successfully classified the success/failure of the tasks at 85.2%
from electroencephalogram (EEG) combined with focused docu-
ment types. This result suggests that our metrics based on EEG
and focused document types might be beneficial to detect devel-
opers’ diverse mental activities triggered by different documents.

CCS CONCEPTS
• Software and its engineering → Software evolution; • Ap-
plied computing→ Bioinformatics; • General and reference
→ Metrics.
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1 INTRODUCTION
Supports for program comprehension make software developers
be more productive in their software implementation and debug-
ging processes. Such systematic supports would be improved if the
system can be aware of developers’ mental states during program
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comprehension. For example, the support system might become
possible to detect a software developer who does not understand
the outputs of related source code and then visualize the calcula-
tion processes of the output values.

Program comprehension involves two-fold understanding of the
target source code: Procedure (how it works) and objective (what
it works for) [1, 2]. Understanding of "procedure" consists of var-
ious sub-processes such as understanding of control flows, roles
of defined variables and functions, usage of API architecture. Fur-
thermore, developers’ attentions during program comprehension
tend to be distributed on each line, block, method, class, and en-
tire source code. Current systematic supports for program compre-
hension processes do not take these diverse sub-processes into ac-
count. Sensing and classifying developers’ mental processes based
on their biometric data would be beneficial to improve the quality
of these systematic supports.

Our long-term research goal is to provide state-aware supports
for developers’ program comprehension processes by identifying
their mental states based on biometric data. It is difficult to identify
developers’ mental states during program comprehension based
solely on external observations because the processes mainly take
place in the brain. Behavior tracking systems capture developers’
program comprehension processes from human computer inter-
action data [3]. However, the tracking systems get no behavioral
data if developers spend time to thinkwithout any interactionwith
computers. Another line of studies has investigated change tasks
and patterns of documentation usage based on developers’ behav-
iors and eye movements [4, 5]. Combining these context switching
information with brain activity data might enable us to reveal de-
velopers’ fine-grained mental processes during program compre-
hension. Additionally, this approach would be beneficial to classify
the success/failure of program comprehension processes due to its
sensitivity on internal cognitive processes.

In this study, we aim to predict successes and failures on pro-
gram comprehension processes fromdevelopers’ electroencephalo-
gram (EEG) and eye movement data. Ishida et al. showed that the
changes in EEG and eye movement data can be synchronized dur-
ing program comprehension tasks [7]. Technically, the subjects’ α
spectrum in EEG and attention rates on source codewere increased
in early phases if they succeeded to comprehend a given code snip-
pet while the changes have occurred lately if they failed. Here we
use the synchronized changes in EEG and eye movement data to
classify developers’ success and failure on program comprehen-
sion. More dynamic and appropriate support might be enabled if
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the support system can be aware of developers’ mental states from
biometric data.

2 RELATEDWORK
In the past ten years, biometric data has been attracting increased
attention to quantitatively investigate or estimate the mental pro-
cesses of software developers. Siegmund et al. contrasted brain
activities during program output estimations against syntax error
searches using functional magnetic resonance imaging (fMRI) and
showed that program comprehension processes activated several
left-lateralized brain regions [6, 8]. Peitek et al. developed amethod
to simultaneouslymeasure fMRI signals and eye-movements to ob-
tain a more comprehensive understanding of program comprehen-
sion [9]. Although fMRI is a powerful tool to visualize how pro-
gram comprehension processes take place in the brain due to its
high spatial-resolution, it consumes non-negligible monetary cost
and unsuitable to measure in practical working environments.

Several recent studies in the software engineering domain have
combinedmore light-weight biometric sensorswithmachine learn-
ing techniques to classifymental states of software developers [10].
Frits et al. trained a Naive Bayes classifier on three biometric sen-
sors involving EEG, electrodermal activity (EDA), and eye move-
ments to predict the difficulty of program comprehension tasks
[11].Müller et al. trained a decision tree classifier on EEG, EDA, eye
movements, and heart-related data to classify developers ’men-
tal states (i.e. stuck or inflow, happy or frustrated) and resulted
in around 70 percent classification accuracies [12]. Both of their
results suggested that combinations of two or more different bio-
metric data could be useful to estimate developers’ mental states
or subjective difficulties.

Here we investigate whether biometric data can be varied ac-
cording to fine-grained mental processes triggered by the types
of focused documents. In particular, we investigated both the fo-
cused document types and EEG data recorded while subjects per-
formed program comprehension tasks with multiple documents.
Our combined analysis would be suitable for understanding the
sub-processes of program comprehension since the EEG and eye
movements can bemeasured in high temporal resolutions. Further,
the devices are easy to apply in real environments such as company
working spaces and classrooms for students.

3 EEG AND EYE MOVEMENTS
3.1 EEG
EEG is a method to record the electrical activity of the brain typ-
ically using electrodes placed on the scalp. The method measures
voltage fluctuations as a potential difference between two elec-
trodes over a period of time [13]. Typical derivation methods are
classified as the standard or bipolar method. The standard method
is employed when two electrodes need to be placed close to each
other, while the bipolar method is used to measure the difference
between two specific positions and remove the irrelevant back-
ground components. In addition, formal electrode positions are de-
fined by several internationally-acknowledged systems such as the
10-20 systems. In the 10-20 system, the positions of nineteen elec-
trodes except for the one for defining ground potential are deter-
mined.

Many studies have investigated the frequency components of
EEG data decomposed by FFT (Fast Fourier Transform) or STFT
(Short Time Fourier Transform) [13]. The famous classification of
these frequency components is following: δ wave in 0.1 - 4 Hz;
θ wave in 4 - 8 Hz; α wave in 8 - 13 Hz; β wave in 13 - 30 Hz;
and γ wave in 30 - 100 Hz. The signals of each frequency compo-
nent can differ depending on subjects’ behaviors and mental states
[11, 14, 15]. For instance, α wave becomes stronger when a sub-
ject is relaxed or concentrating on a task while β and alpha waves
respectively become stronger and weaker when the person is puz-
zled or stressed. In this study, we use EEG as a biometric to classify
programmers who successfully understand source code.

3.2 Eye Movement
Eye movement is recorded as a series of the spatial coordination
(x and y) on a display that calculated from his/her eyeball move-
ment [16] and the information allows us to infer where the subject
looked at and how long each attention took on the place. Since
software documents such as source code and requirement spec-
ifications consist of numerous lines, the eye movement analyses
in software engineering studies keep playing an important role
to enable line-wise analysis of program comprehension processes.
Further, eye movement data has been employed to analyze the dif-
ference between novice and expert programmers during program
comprehension and debugging. For instance, Behroozi et al. dis-
tinguished who understands source code via eye movement data
[17] and Busjahn et al. demonstrated the differences in the ratio of
linear eye movement patterns between experts and novices [18].

Eye movement analyses do not include the internal states of
program comprehension. Long gaze-fixation time to a single line
generally suggest that the focused line is important for the en-
tire understanding or hard to understand. However, eye movement
analyses can not distinguish these two internal situations because
the data hardly contains information related to their mental ac-
tivities. In this study, we used a history of document switching to
determine which document a subject focused their attention dur-
ing the program understanding tasks.

Our experimental environment presented several documents in
a time and subjects can switch them through a tab interface. Be-
cause each tabwindowonly contained a single document, the switch-
ing history directly indicates which document was focused at each
period of time.

3.3 Potential Relationship between EEG and
Eye Movement

Our key idea is to utilize the biometric pattern of successful pro-
gram comprehension that can be summarized as "concentration
of visual attentions to source code is followed by an increase in
powers of EEG frequency components". Program comprehension
is consisted of understanding various documents, such as source
code and specifications, and programmers focus their attention on
source code when they engage in program comprehension pro-
cesses. An earlier work [7] showed that programmer’s α spec-
trum tends to rapidly increase when he/she succeeded in program
comprehension tasks, while the spectrum slowly increases if they
failed the tasks. Therefore, the concentration of visual attentions
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on source code followed by the considerable increase of α spec-
trum would be a useful feature to determine his/her program com-
prehension processes are succeeded or failed. In this study, we hy-
pothesize that an increase of α wave in the succeeded trials is ob-
served earlier than those in the failure trials. To validate this hy-
pothesis, we employ the EEG data and focused document type on
each time point as a proxy of internal cognitive process and con-
text switching. Our experiment investigates whether the success
or failure of a program comprehension task can be classified by
the combined metrics.

4 EXPERIMENT
For this study, we recruited five subjects with a major in computer
science from National Institute of Technology, Nara College (all
males, aged between 19 and 20 years). All had normal or corrected-
to-normal vision and understood basic-level Java grammars.

4.1 Task Design
The experiment consisted of 16 tasks and in each task subjects
were presented with three documents; (1) a Java code snippet with
one class implementation, (2) a requirement specification that ex-
plained the purpose of the program, and (3) a question statement,
e.g. the question “What will be the value of variable a at the sixth
line in the second loop?” and the answer “a is 12”. For each task,
subjects were given 2.5 minutes to comprehend the documents and
were required to answer the question verbally within the time. The
experimentersmanually judged subjects’ answers and labeled each
task as success or f ailure . Technically, we labeled success if a sub-
ject answered the question correctly within the given time and la-
beled f ailure if the answer was incorrect or no answer available.

We prepared two difficulty levels (easy or difficult) in each task
so that we could obtain similar sample numbers of success and
f ailure trials. For easy tasks the given code snippets consisted of
a main method, single loop block, and single conditional branch,
while the snippets in difficult tasks included a complex algorithm
that had multiple methods or a recursive structure. Note that we
randomized the presentation order of stimuli across subjects to
minimize the potential order effects.

4.2 Data Collection
We used the NeXus-10 MARK II manufactured by Nanotech Image
Ltd. to collect EEG data from all subjects while they performed
the experimental tasks. We measured subjects’ EEG with 256Hz
sampling frequency on a single electrode position Pz based on the
10-20 system [19]. The ground electrode was located on right ear
(A2), standard electrode was located on left ear (A1). In addition,
we recorded all tab-switching histories while they performed the
tasks and used them as an indicator of their focused document
type. The experiments were performed in a quiet room with a sub-
ject and two experimenters. All subjects sit on a chair with arm-
and foot-rests and were instructed to keep their body stable as pos-
sible to suppress potential artifacts due to body movements.

4.3 Data Analysis
We first calculated power spectrum of α waves from EEG data in
each task, independently for each subject. Technically we divided

EEG data on each task into 200 ms length and then calculated the
power spectrum using STFT [13]. The calculated power spectrum
was averaged over each five seconds to simplify the analysis. To
mitigate the individual difference in EEG data, we normalized the
averaged power spectrum based on the median value of each task.
Next we quantified the fixation ratio of each document type (i.e.
’code’, ’specification’, ’question’) from the tab switching histories
recorded during the tasks. This procedure enabled us to identify
which document the subject focused on because the tab interface
used in this experiment displayed only one document in a time.
The fixation ratio was finally averaged over every five seconds as
percentage of the fixation time to each document type.

We here used a specific pattern in biometric data as a prime
feature to classify a success of program comprehension. The pat-
tern was summarized as ’the concentration of visual attentions on
source code followed by the considerable increase of α spectrum’
[7]. Both a fixation ratio on code snippets and an increase inα spec-
trum were calculated from the differences between adjacent time
periods. Technically, letALPHAp,t be a power spectrum of α wave
in subject p at task t and let EYEp,t be a fixation ratio on the code
snippet. Bothmetrics are divided intoN periods (n = 1, 2, ...,N ) for
every five seconds where αn is the averaged power of α spectrum
on the period and eyen is a ratio of time when the code snippet
was displayed. Note that the last periods that lasted less than five
seconds were excluded from our analysis.

ALPHAp,t = {α1,α2, ...,αn }
EYEp,t = {eye1, eye2, ..., eyen }

We then calculate α-incn and eye-incn each corresponds to an in-
crease/decrease in the metric at period n.

α-incn = {αn+1 − αn | N > n ≥ 1}
eye-incn = {eyen+1 − eyen | N > n ≥ 1}

We finally extracted the temporal difference between xth largest
values of α-incn and eye-incn . Let Txα be the xth largest increase
in the alpha spectrum observed at period t and let Txeye be the
xth largest fixation ratio on source code. The temporal difference
between Txα and Txeye is calculated as the following:

Tieye -T jα = {Tieye −T jα | 1 ≤ i ≤ x, 1 ≤ j ≤ x}
For instance, eyeT 1-αT 5 means the temporal distance between

the first largest increase of the fixation ratio and the fifth largest
increase of α spectrum. Positive values mean an increase of the fix-
ation ratio appeared slower than α spectrum increase while nega-
tives indicate the opposite. Here we classified a success of the task
using Random Forest and both x = 3 and x = 5 parameters to ex-
amine the effect of x on the classification accuracies. The classifica-
tion accuracies were evaluated by a leave-one-out cross validation
procedure.

5 RESULTS AND DISCUSSION
We collected 80 data (16 tasks × 5 subjects) from 47 success and 33
f ailure trials. We first evaluated classification accuracies on x = 3
using 70 data (success:39, failure:31); 10 data were excluded be-
cause of short measurement duration less than 15 seconds (N < 4).
Table.1 shows the results of classification accuracies. The result
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Table 1: Classification Accuracy (x = 3)

Accuracy Task time (s) Success Time up
All 0.843 75.4 0.557 0.243
Success 0.897 68.0 - -
Failure 0.774 96.1 - 0.548
Easy 0.839 56.1 0.871 -
Difficult 0.846 102.7 0.308 0.436
Subject 1 0.923 66.6 0.615 0.231
Subject 2 0.692 79.7 0.308 0.231
Subject 3 0.813 75.0 0.563 0.188
Subject 4 0.867 71.6 0.667 0.333
Subject 5 0.923 84.4 0.615 0.231

demonstrated the classification accuracy on all data was 0.843, in-
dicating that the accuracy was clearly higher than chance (0.5).
This suggests that our proposed metrics could be useful to predict
a success of program comprehension. Interestingly, the accuracies
for success (0.897) and f ailure (0.774) trials were different. This dif-
ference might be affected by the structure of f ailure data as a mix-
ture of two failure types; failures due to the incorrect answer (14
data) and failures when subjects spent all of the given time with-
out answering (17 data). Subjects might not perform well program
comprehension processes when they met the time limit without a
clear increase in fixation ratio on source code.

We evaluated the difference in classification accuracies across
subjects. The difference between the highest (subject 1 and 5) and
lowest (subject 2) accuracies was 0.231. This might be caused by
the ratio of success trials in subject 2. The amount of data was
not enough to learn the biometric pattern in success trials because
the success ratio was lowest in subject 2. Another possible inter-
pretation could be the variations in time duration, which calcu-
lated from task start to making the first answer, because the time
on failure trials was longer than those on success trials (see Table
1). However, the correlation analysis showed no significant corre-
lation between the task time and classification accuracy on each
subjects (r = −0.266, p = 0.665).

Table 2 shows the classification accuracies using parameter x =
5. We used 54 data (success:25, failure:29) and 26 data were ex-
cluded because their lengths were not enough to calculateT 5α and
eye3T 5. As a result the overall classification accuracy (0.852) was
similar to the value on x = 3. In addition, the classification accura-
cies on success trials (0.880) were higher than failure trials (0.828)
showing a similar tendency on x = 3. In comparison with the re-
sults on x = 3, the classification accuracies of subject 1 and 3 were
decreased because insufficient training data. The number of sam-
ples decreased from 13 to 8 (38.5%) in subject 1 and 16 to 11 (31.3%)
in subject 3, respectively. Correlation analysis between task time
and classification accuracy on each subject in x = 5 shows no sig-
nificant correlation (r = 0.028, p = 0.965).

We additionally investigated the mean decrease in Gini coeffi-
cient as a measure of how each variable contributes to the resulted
classification accuracies. Figure 1 indicated that T 1eye −T 3α and
T 3eye − T 1α were higher than other variables. In both variables
the absolute values of failure were higher than success. The value
of success/failure were -7.9 and -15.9 at T 1eye − T 3α ; 5.6 and 9.8

Table 2: Classification Accuracy (x = 5)

Accuracy Task time (s) Success Time up
All 0.852 88.8 0.463 0.315
Success 0.880 81.1 - -
Failure 0.828 104.8 - 0.586
Easy 0.813 66.7 0.875 -
Difficult 0.868 105.6 0.289 0.447
Subject 1 0.875 92.8 0.375 0.375
Subject 2 0.727 85.1 0.273 0.273
Subject 3 0.636 94.1 0.455 0.273
Subject 4 1.000 79.1 0.615 0.385
Subject 5 1.000 94.4 0.545 0.273

T1eye−T1a

T1eye−T2a

T1eye−T3a

T2eye−T1a

T2eye−T2a

T2eye−T3a

T3eye−T1a

T3eye−T2a

T3eye−T3a

0 2 4 6

MeanDecreaseGini

Figure 1: Mean Decrease of Gini Coefficients (x = 3)

at T 3eye − T 1α respectively. This analysis suggest that subjects
failed to understand source code had a longer period of time be-
tween the increases in fixation ratio and α spectrum, supporting
our hypothesis to a success of program comprehension that ’the
concentration of visual attentions on source code followed by the
considerable increase of α spectrum’.

6 CONCLUSION
In the present study, we classified a success of program compre-
hension tasks based on α spectrum powers and focused document
types. Specifically, we used the temporal distance between increases
in α spectrum power and fixation ratio on source code. Although
several inter-subject differences were observed, the resulted clas-
sification accuracy (0.852) was clearly higher than chance. The re-
sults indicate that our proposed metric is useful to classify suc-
cess/failure of program comprehension processes. This encourages
us to develop a real-time support system that detect fine-grained
mental processes conducted by a software developer. The proposed
metric might be improved by taking the potential effects of gender,
age, and individual programming expertise into account. In addi-
tion, other biometrics such as flickers and β power spectrum could
be beneficial to classify the success/failure of a program compre-
hension process.
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