

15th International Symposium on Advances in Technology Education

20-23 September 2022, Singapore

Automatic Mapping of Syntax Trees and Eye Movement for Semantic-based Program

Comprehension Pattern Extraction

Haruhiko Yoshioka*,a, Hidetake Uwanob

a dept. Advanced Information Engineering National Institute of Technology,

Nara College Nara, Japan
b dept. Information Engineering National Institute of Technology,

Nara College Nara, Japan

*ai1103@nara.kosen-ac.jp

Abstract

Understanding how efficient developers

understand source code is an important study to

improve the work and/or learning efficiency. Many

studies have measured developers' eye movement to

source code for understanding efficient reading

methods. To understand the efficient reading method,

researchers must comprehend the corresponding

between eye movement and displayed source code.

However, it is time-consuming to extract each

understanding method/pattern among different

source codes, because of the difference in control flow

and formats. In this paper, the authors propose a

method that converts the eye movement recorded as

display coordinates to a semantic transition sequence

based on a syntax tree.

Keywords: programming education, program

comprehension, eye tracking, pattern mining, knowledge

extraction

Introduction

 In software engineering research, understanding the

“understanding process” during program reading is an

important study to teach beginners the efficient reading

methodology. The better understanding method

improves the efficiency of development processes such

as implementation and debug/testing and reduces

development costs. A lot of previous research measures

developers’ eye movement to analyze the program

reading (program comprehension) process (Hauser et al.,

2020; Rodeghero et al., 2014; Crosby and Stelovsky,

1990; Bertram et al., 2020). In such research, eye

movement is recorded as a time series of positional

information by eye tracker and expressed as coordinates

of the display. For this reason, some previous research

analyzes developers’ comprehension process based on

their positional eye movement during source code

reading (Hauser et al., 2020; Rodeghero et al., 2014;

Crosby and Stelovsky, 1990; Bertram et al., 2020).

However, the position-based analysis of eye

movement during program comprehension is a time-

consuming analysis because researchers manually

understand the correspondence between eye coordinates

and source code. Analyzing more general understanding

patterns is harder because different source codes have

different control flows and formats. Table 1 shows an

example of the data recorded by an eye tracker. X and Y

mean two-dimensional coordinates that the participant

“read” at each time. Previous studies used the position-

based eye movement information and analyzed the

developer’s characteristics from the direction of eye

movement and fixation time (the amount of time the gaze

remains within a certain range). For example, Hauser et

al. (2020) and Busjahn et al. (2015) found that skilled

users tend to move their eyes up and down more than

novices.

On the other hand, two source codes with the same

control flow but different syntax, and eye movements are

different even though the reviewer read the same control

flow is the same (Figure 1). In the figure, circle and line

mean the series of eye movements, each circle shows the

fixation. Two code snippets in the figure calculate the

summation from 1 to 10, the (a) uses a for statement and

the (b) uses a while statement. These two statements have

different structures, hence coordinate-based analysis

appears the eye movements for two source codes

differently, such as “left to right” at for statement and ”up

to down” at while statement. Previous studies manually

Fig1. Two code snippets with different statement

(a) for statement (b) while statement

Time X Y

24:54.1 322 457

24:54.1 322 458

24:54.2 328 463

24:54.2 326 469

24:54.2 320 479

Table1. Eye movements as display coordinates

15th International Symposium on Advances in Technology Education

20-23 September 2022, Singapore

interpret these different eye movements to come from the

same understanding pattern, the interpretation needs a lot

of time to find.

In this paper, the authors propose an analysis method

that converts coordinate-based eye movement to

transitions for syntax node in source code. The proposed

method abstracts differences in coordinates and

statements by representing eye movement as transitions

between semantic units in source code. Figure 1 shows

two different eye movements onto two source codes, both

source codes calculate the summation from 1 to 10. In the

figure, eye movement for (a) and (b) follows the same

processes, initialization, condition, increment, and result

calculation. The simple coordinate-based analysis

describes these eye movements as different movements.

Our proposed method extracts an ordered list of syntax

nodes that eye movement passed. The method allows us

to use pattern mining techniques for extracting a general

understanding strategy from eye movement data. In this

paper, the authors use syntax nodes to represent the

smallest unit of processing content (token) that eye

movement passed. More abstract representation of eye

movement is an important future work for efficient large-

scale analysis.

Related Works

Eye-tracking is well used to analyze differences

between novice and expert programmers. The state in

which the gaze remains within a certain range for a

certain time is called fixation, and its central coordinates

are called the fixation point. Fixation points are used to

identify the location of the reader’s interest and its change

over time. Hauser et al. compared the differences in the

gaze-to-stop point between novices and experts. Hauser

et al. (2020). The results showed that the expert group

tended to read source code in a nonlinear manner while

the novice group read linearly.

Area of interest (AOI) is another well-used analysis

method. The researcher defines multiple AOIs on the

object (picture or source code snippet), then successive

fixations within the same AOI are summarized. Several

program comprehension research analyzes developers’

comprehension patterns by defining AOIs on the words

and phrases in source code (Rodeghero et al., 2014;

Crosby and Stelovsky, 1990; Bertram et al., 2020;

Chandrika et al., 2017). Rodeghero et al. (2014) analyzed

the length of fixation time for AOIs assigned to method

signatures, method calls, control flow, and others. The

analysis showed that programmers read method

signatures much longer time than (method calls) and

control flow. Crosby et al. analyzed the difference in

review time allocation for each AOIs between novices

and experts. The result showed that the experts spent less

time on comments than novices (Crosby and Stelovsky,

1990). Peitek et al. (2020) converted coordinate-wise eye

tracking data to line-wise for comparison between novice

and intermediate students. The results showed that

intermediate students moved their gaze to the top line of

the source code more frequently than novice students.

Most previous research converted coordinate-based

eye tracking data to AOI-based or line-based by manually

determining which area in the source code is the AOI/line

of code. This conversion requires a lot of time for longer

source code. One of the open-source software, iTrace

automatically converts the coordinate-based eye tracking

data into the line/column numbers in source code. iTrace

is implemented as a plugin of Eclipse, one of the

commonly used in development and education. The

authors use iTrace to convert coordinate-based eye

tracking data to line/column numbers of source code. Our

proposed method extracts words/characters of the source

code from the line/column numbers, then make

corresponds with syntax tree.

Proposed Method

Our proposed method outputs eye movement as a

transition of syntax node in the source code. Figure 2

shows an overview of our method. In the figure, each

square represents software and hardware module, each

thin arrow represents information flow. The developer’s

eye movement during the code reading is measured using

an Eye Tracker. The Eye Tracker outputs eye movement

as a time-series display coordinate (such as X:121,

Y:313) with observed time. Coordinate Line/Column

Converter receives the coordinate-based eye movement

and the source code as inputs, then outputs the

line/column-based eye movement (Main.java, L:1,

Row:13). We used iTrace as the Coordinate Line/Column

Converter. Source code is also sent to Java Parser to

extract Syntax Tree from the source code. Our

implementation used ANTLR Java parser, an open-

source parser generator. Syntax Tree/Eye Linker

receives the syntax tree of the source code and

line/column-based eye movement, and outputs syntax-

node-based eye movement. Java Parser performs lexical

and syntactic analysis, and Syntax Tree/Eye Linker

converts eye movements to word units in the source code

by mapping lexical analysis results to line/column-based

eye movements. Furthermore, eye movement is

expressed in node units on the syntax tree by mapping the

parse results.

Figure 3 shows an example of the syntax tree, that is

generated from the main method of source code in Figure

4. In Figure 3, each leaf node denotes words in the source

code and its Line/Column numbers. Each internal node

describes a syntax structure of child nodes. For example,

the right most internal node (block @19) describes that

formed from three words (sum, +=, i) at Line 5 in Figure

4, and is a part of for statement (statement @13) at Line

4. The proposed method systematically converts each

fixation into the meaning of a word in the source code,

the output can use for different analyses with minimal

post-processing.

Case Study

In this section, we describe how the proposed method

can be used to analyze the developer’s eye movement.

We select Main.java in Figure 4 and eye movement for

15th International Symposium on Advances in Technology Education

20-23 September 2022, Singapore

the source code for our case study. Figure 5 shows the

eye movement visualization by our implementation

system, and Table 2 shows an output of the

implementation of the proposed method. Syntax Tree

column shows text form expression of syntax tree for

each token. Visualized coordinate-based eye movement

in Figure 5 clearly shows the participant read the index

declaration, conditional expression, index

incrementation, and line 5 in this order. That is the

participants may try to understand a process in the “for”

statement or a role of variable i. Line/column number and

token in Table 2 describe the same eye movement,

however it is hard to understand what syntax structure is

01 public class Main {

02 public static void main(String[] args) {

03 int sum = 0;

04 for (int i = 1; i <= 10; i++) {

05 sum+=i;

06 }

07 System.out.println(sum);

08 }

09 }

Fig4. Main.java

Fig3. An Example of Syntax Tree

Fig2. Proposed Method

15th International Symposium on Advances in Technology Education

20-23 September 2022, Singapore

read by the participant without the source code.

Compared to these previous eye movement descriptions,

the text form syntax tree includes the structure

information with different granularities. Hence the

proposed method allows for researchers following

analysis:

⚫ Summarization by syntax structure

Every syntax tree text in Table 2 includes “blc@9/

stm@13”, which means the entire eye movement

concentrated on the “for” block in lines 4-6. Each

number describes a unique identifier of syntax

structure such as class, method, block, and

statement, hence consecutive eye movements that

have the same ID can combine as one long-time

fixation.

⚫ Abstracted sequential analysis

Figure 6 shows the same eye movement in Figure 5,

however, is written at the syntax tree in Figure 3. A

thin dotted line shows an order of tokens in which

eye movements were fixated. Researchers can find

the order from line/column-based eye movement, in

this case, we can find the eye movement follows

variable i in the “for” statement. A thick dotted line

in Figure 6 shows an abstracted eye movement. The

eye movement follows index declaration

(VariableDeclaration@16), conditional expression

(conditional expression@17), index increment

(expression@18), and the statement in for block

(block@19), in that order. Table 2 also shows the

syntax tree text includes these IDs and tokens;

researchers can select abstraction level that research

purpose requires.

⚫ Pattern mining of vectorized syntax structure

The syntax tree text includes different abstraction

levels of token information that eye movements

stayed. Our proposed method outputs the text

Time Fixation Line Column Token Syntax Tree

1 02:15 705, 226 4 18 i blc@9/ stm@13/ lvdec@15/ vdec@16/ i[L4,C18]

2 02:16 800, 235 4 22 1 blc@9/ stm@13/ lvdec@15/ vdec@16/ 1[L4,C22]

3 02:18 877, 234 4 25 i blc@9/ stm@13/ exp@17/ i[L4,C25]

4 02:19 928, 228 4 27 <= blc@9/ stm@13/ exp@17/ <=[L4,C27]

5 02:21 1076, 237 4 34 i blc@9/ stm@13/ exp@18/ i[L4,C34]

6 02:23 708, 283 5 18 i blc@9/ stm@13/ blc@19/ i[L5,C18]

7 02:24 618, 282 5 13 sum blc@9/ stm@13/ blc@19/ sum[L5,C13]

Table2. An Output Example of the Proposed Method

Fig5. Eye Movement for Main.java

Fig6. An Eye Movement Visualization with Syntax Tree

15th International Symposium on Advances in Technology Education

20-23 September 2022, Singapore

pautomatically without any pre-analysis or

preparation such as AOI definitions. Hence the

pattern mining analysis of vectorized eye movement

information from syntax trees will provide

important data to analyze their reading pattern or

method.

⚫ Inter-source code comparison and mining

Different source codes may use different identifiers

for the same purpose, such as “sum” and “total” for

a variable that contains a total number of

calculations. Text-based pattern mining cannot find

patterns that contain different identifiers with the

same purpose/usage. Also, coordinate-based eye

movement cannot find such patterns because the

positional relationship of tokens is different

between source codes, even if the two identifiers are

used for the same purpose. On the other hand,

abstracted, and vectorized syntax structures from

syntax tree text can extract such patterns.

Conclusion

In this paper, the authors proposed an analysis method

that converts coordinate-based eye movement to

transitions for syntax nodes in source code. The proposed

method abstracts differences in coordinates and

statements by representing eye movement as transitions

between nodes in a syntax tree. Our case study showed

that the text form syntax tree is useful to summarize

consecutive eye movements and abstract the eye

movement position from token to a statement or a block.

Future work of this study includes the following

analyses using the proposed method.

⚫ Extract common understanding patterns from

developers’ eye movement

⚫ Efficiency and effect analysis of eye movement

patterns including comparison between experts and

novices

⚫ Pattern mining of eye movements to different

source codes

Acknowledgments

This work was supported by JSPS KAKENHI Grant

Number JP21K11842.

References

Bertram, I., Hong, J., Huang, Y., Weimer, W., and

Sharafi, Z. (2020). Trustworthiness perceptions in

code review: An eye-tracking study. In Proceedings

of the 14th ACM / IEEE International Symposium on

Empirical Software Engineering and Measurement

(ESEM), 1-6.

Busjahn, T., Bednarik, R., Begel, A., Crosby, M.,

Paterson, J. H., Schulte, C., Sharif, B., and Tamm, S.

(2015). Eye movements in code reading: Relaxing the

linear order. In Proceedings of the 2015 IEEE 23rd

International Conference on Program Comprehension

(ICPC), 255–265.

Chandrika, K. R., Amudha, J., and Sudarsan, S. D. (2017).

Recognizing eye tracking traits for source code

review. In Proceedings of the 22nd IEEE

International Conference on Emerging Technologies

and Factory Automation (ETFA), 1–8.

Crosby, M. and Stelovsky, J. (1990). How do we read

algorithms? a case study. Computer, 23(1), 25–35.

Guarnera, D. T., Bryant, C. A., Mishra, A., Maletic, J. I.,

and Sharif, B. (2018). iTrace: Eye tracking

infrastructure for development environments. In

Proceedings of the 2018 ACM Symposium on Eye

Tracking Research & Applications (ETRA), 1-3.

Hauser, F., Schreistter, S., Reuter, R., Mottok, J. H.,

Gruber, H., Holmqvist, K., and Schorr, N. (2020).

Code reviews in C++: Preliminary results from an eye

tracking study. In Proceedings of the ACM

Symposium on Eye Tracking Research and

Applications (ETRA), 1-5.

Peitek, N., Siegmund, J., and Apel, S. (2020). What

drives the reading order of programmers? An eye

tracking study, In Proceedings of the 28th

International Conference on Program Comprehension

(ICPC), 342–353.

Rodeghero, P., McMillan, C., McBurney, P. W., Bosch,

N., and D’Mello, S. (2014). Improving automated

source code summarization via an eye-tracking study

of programmers. In Proceedings of the 36th

International Conference on Software Engineering

(ICSE), 390–401.

