
Comparison of Algorithm and Kernel Accuracy in
Defect Detection Using Pressure in Sleeve Soldering

Equipment
1st Kan Watanabe

Department of Advanced Information Engineering
National Institute of Technology (KOSEN), Nara College

Nara, Japan
ai1149@nara.kosen-ac.jp

2nd Hidetake Uwano
Department of Information Engineering

National Institute of Technology (KOSEN), Nara College
Nara, Japan

uwano@info.nara-k.ac.jp

3rd Hiroshi Fukuoka
Department of Mechanical Engineering

National Institute of Technology (KOSEN), Nara College
Nara, Japan

fukuoka@mech.nara-k.ac.jp

Abstract—As the degree of device integration increases,
detecting soldering defects on electronic boards becomes more
complex, and the need for automatic inspection increases. In
this study, we propose a method for distinguishing the quality
of soldering for sleeve-soldering equipment. The object to be
soldered is covered with a heated sleeve, and the solder pieces
dropped in the sleeve are melted for soldering. Nitrogen gas
is injected into the sleeve, and the pressure inside the sleeve
changes as the solder pieces melt and flow into the through-hole.
The proposed method identifies the quality of the solder using
the features extracted from the pressure change. We compare
the prediction accuracy when applying multiple kernels to the
support vector machine (SVM) and relevance vector machine
(RVM). The experimental results show that the Polynomial
kernel of the SVM exhibits the best performance with an
average accuracy of 100% and average False Negative of 0%.

Index Terms—soldering, prediction, SVM, RVM

I. Introduction

The quality of soldering that joins a printed wired
board (PWB) and a device affects the strength of the
joint, which has considerable impact on reliability of a
device in environments with vibrations, such as electric
vehicles. Therefore, soldering defects must be detected. A
major inspection method is a worker visually confirming
whether the through-hole is filled with enough solder;
however, this method depends on the experience and
ability of the worker. In addition, owing to the minia-
turization of devices, the degree of device integration has
increased, making visual inspection difficult. Therefore,
methods for automatically inspecting solder joints are
being researched.
The sleeve-soldering device is one of the devices used

for soldering. The device covers the through-hole with a
heated ceramic cylinder (sleeve) and melts the solder by
dropping the solder pieces into the sleeve. As the solder
is melted inside the sleeve, scattering of the ball solder

is prevented, and a constant amount of solder can be
supplied to the joint; this has the advantage of stabilizing
the quality of the solder. Also the device fills the sleeve
with nitrogen gas prevents the solder from oxidizing,
enabling the melted solder to flow into the through-holes,
thus preventing the formation of the cold solder joint. As a
constant amount of nitrogen gas is continuously supplied
from the top of the sleeve, the pressure inside the sleeve
changes from variations in gas outflow due to the melting
of solder pieces and contact between the sleeve and the
PWB.
In a previous study, the quality of soldering was eval-

uated by using the Random Forest and support vector
machine (SVM) against pressure changes during soldering
with a sleeve-soldering machine, and an accuracy of 95.5%
was obtained with the SVM [1]. In this study, to improve
the classification accuracy, we compare the prediction
accuracy of the SVM and its advanced method, the
relevance vector machine (RVM). In addition, we compare
multiple kernel functions and identify combinations with
high classification accuracy.

II. Related research
A typical method for identifying the quality of soldering

is to extract feature values from images of soldered boards.
Wu [2] employed machine learning to extract image
features after locating solder joints from board images.
The accuracy of five machine-learning methods (decision
tree, k-neighborhood method, SVM, neural network, and
Random forest) were compared, and the Random forest
was able to predict five types of defective solder with 100%
accuracy. Dai et al. [3] used YOLO, an object detection
method, to classify the types of defective solder by utilizing
the features of the solder joints localized from the board
image; the annotation error rate was less than 1.5% for all



datasets. In the research using board images, inspection is
performed after all soldering on one board is completed.
By contrast, in the proposed method using the pressure
change in the sleeve-soldering device, the soldering can
be inspected immediately after it is completed in each
through-hole without interruptions; this enables real-time
defect detection. In addition, the pressure waveform of
the sleeve-soldering device is considered to reflect the
differences in the operations of the soldering device in each
process of soldering. Therefore, the cause of a defect in
each process can be identified from the pressure waveform.
Kernel methods in machine learning are used in various

research fields. As the performance of kernel methods is
affected by the selection of a kernel function suitable for
the data distribution, comparing different kernel functions
is necessary when the characteristics of the data are
unclear. SVMs and RVMs are often used in classification
for detection, prediction, etc. [4] [5] [6] [7] [8] [9], and are
compared for classification accuracy [10] [11]. Classifica-
tion accuracy with different kernel is also major topic in
research field [12] [13] [14]. Xiang-min et al. [11] compared
performances on the Heart_scale, Breast_cancer, Boston,
and Wdbc datasets, and the results showed that the RVM
was equivalent to the SVM in terms of learning efficiency
and classification accuracy and superior in terms of
sparsity characteristics, generalization ability, and decision
speed. Karal [13] conducted an experiment to confirm
the effectiveness of kernel functions and k-point cross-
validation in the SVM and showed a maximum change
of 17.4% for each kernel function and 16.7% for k-point
cross-validation. Wijayanti et al. [14] used four kernels to
analyze bullying on twitter by employing the SVM and
compared the classification accuracy; their results showed
that the sigmoid kernel achieved the highest accuracy of
83.6%.
In this study, we compare the accuracy of different

kernel functions when using the SVM and RVM in deter-
mining the quality of solder. The pressure change in the
sleeve-soldering device, which is the subject of this study,
overlapping the data of correct solder and incorrect solder
is highly probable. Therefore, in addition to evaluating the
SVM, which exhibited the highest accuracy in a previous
study [1], we compare the accuracy of multiple kernel
functions when using the RVM, which is more resistant
to data overlap and outliers than the SVM. Thus, we
determine the combination with the highest accuracy.

III. Inspection method for sleeve-soldering
Current point soldering includes iron soldering and laser

soldering. Iron soldering is a method in which solder is
melted with a heated iron tip and supplied to the joint
between the pin and the PWB. Laser soldering is a method
in which a laser irradiates a pin and a PWB to generate
heat, raising the temperature of the joint to the melting
point of the solder and supplying solder from the device.
Sleeve soldering has better wettability (which indicates

the spread of solder) than iron soldering, and the tip of
the soldering iron need not be replaced to prevent wear. In
addition, unlike in laser soldering, in sleeve soldering, no
solder scattering occurs and a fixed amount of solder pieces
can be supplied, resulting in stable quality. Moreover,
nitrogen gas prevents oxidation of the solder surface by
blocking oxygen.
Fig. 1 shows the state and pressure change inside the

sleeve during soldering. Figs. (a)–(c) depict the contact
between the sleeve and the board, the falling solder
pieces, and the solder pieces melting, respectively. Fig. (d)
displays the rise of the sleeve with correct solder, and Fig.
(d’) shows the rise of the sleeve with incorrect solder. Let
t = 0 s be the time when the solder piece is cut at the top
of the sleeve. (a) At t = −0.57 s, the sleeve and the board
come into contact with each other, narrowing the flow path
of the nitrogen gas and increasing the pressure. (b) At t =
0 s, the solder pieces are introduced into the sleeve, further
narrowing the flow path and increasing the pressure. (c)
When the solder piece melts at t = 1.2 s, it closes the
through-hole and rises to the maximum pressure. (d), (d’)
At t = 2.5 s, the sleeve starts to rise and the pressure
drops. (d) In the case of good solder, the solder solidifies
into a volcano shape near the through-hole; thus, nitrogen
gas flows out as soon as the sleeve rises, and the pressure
drops. (d’) In the case of cold solder, the solder stays on
the top of the pin and solidifies into a spherical shape
at a position farther from the board than good solder.
Therefore, even if the sleeve rises, the gas flow path cannot
be formed immediately, and a considerable amount of time
is required for the pressure to decrease.
In a previous study, a method for distinguishing cor-

rect/incorrect solder was proposed, focusing on the dif-
ference in the timing of pressure changes [1]. The state
of the solder was classified by applying machine learning
using eleven features, such as the time when the pressure
starts to drop from the maximum value and the rate of
drop. The Random forest and SVM were used as machine-
learning algorithms, and the accuracy in classifying three
patterns, namely ”solder on component land side,” ”solder
in through-hole,” and ”no solder in through-hole,” was
82.7% for the Random forest and 87.1% for the SVM. In
addition, the accuracy in classifying two patterns, namely
”solder in through-hole” and ”no solder in through-hole,”
was 94.5% for the Random forest and 95.5% for the SVM.
The accuracy in classifying “solder on component land
side” and ”solder in through-hole + no solder in through-
hole” was 89.9% for the Random forest and 93.3% for the
SVM. In this study, we distinguish between two patterns:
”solder in through-hole” and ”no solder in through-hole.”
We compare the accuracy when using multiple kernel func-
tions for the SVM and RVM to determine the combination
with the highest accuracy.
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Fig. 1: Pressure change during soldering

IV. Experiment
A. Dataset
The pressure change during soldering is measured using

Smart Shot, a sleeve-soldering device manufactured by
And Co., Ltd. The pressure inside the sleeve is measured
at 500 Hz during soldering. A universal board with 320
(20 × 16) through-holes is used for soldering.
The practical settings of the sleeve-soldering device

rarely occur defective soldering, hence obtaining a suf-
ficient number of data for learning is difficult [1]. In this
study, we focus on insufficient preheating, which is a cause
of defects even in actual environments. Preheating refers
to heating the PWB in advance by lowering the sleeve
and bringing it into contact with the board. The suitable
preheating time and temperature for correct soldering
depend on the size and type of the board to be soldered.
For example, a new design board such as a multi-layered
board has a higher possibility to incorrect soldering caused
by insufficient preheating. In the experiment, the board
is cooled by blowing air from an air pump, and the time
interval between soldering is changed from less than 1 s
to 30 s to create an environment in which the preheating
during the previous soldering is cooled.
One of the soldering device developers scores each

soldering result within the range of 0–9 points. A score
of 0–2 indicates incorrect solder with no solder in the
through-hole, and a score of 4–9 indicates correct solder
with solder in the through-hole. The score 3 was not
selected in this experiment. Table I shows the number of
obtained correct/incorrect solder. THNG indicates incor-
rect solder, THOK indicates correct solder, and the higher
the score, the better is the soldering. Incorrect solders
are labeled as × for solder without back fillet, and 4
for solder without back fillet. These labels are not used
for learning. The total number of incorrect solder is 440,

TABLE I: Number of data in the experiment

Correct/Incorrect Label Score # Data # Extract

THNG ×
0 3 3
1 390 390
2 47 47

THOK

4
4 989 75
5 546 75
6 482 75
7 172 75

◦ 8 163 75
9 334 75

Total 3,126 890

whereas the total number of correct solder is 2,686, which
is considerably greater than 440. We equalize the number
of correct/incorrect data by random sampling to prevent
biased learning from the imbalanced data. From 3,126
data acquired in the experiment, all the incorrect solder
and 890 correct solders (with 75 points from each score)
are randomly extracted to create a dataset. The same
operation is repeated 100 times to create 100 datasets. In
the RVM, the score is used as the prediction label. In the
SVM, correct/incorrect labels are used as the prediction
label.

B. Feature extraction
The characteristics of correct/incorrect solder are re-

flected in the pressure during processes (a)–(d’). If the
board is not preheated enough, the heat will not be
transferred to the solder pieces sufficiently, delaying the
start of melting. The timing of the sleeve rises during
soldering is the same in every case. Hence when the sleeve
rises before the melted solder flows into the through-hole,
causing the solder to solidify in the middle of the pin, i.e.
incorrect solder. The solder in the middle of the pin blocks
the gas flow path in the sleeve; hence, the pressure drop
is slower than correct solder. Therefore, quality can be
classified by pressure dropping time from the maximum
pressure.
We use three types of features to identify the quality of

solder: the kurtosis of the pressure waveform, peak length,
and time required for pressure drop. Kurtosis is a value
that expresses the sharpness of the distribution, and the
sharper the waveform, the larger is the value. Therefore,
it is considered to be useful as a feature quantity that
expresses the difference in the melting speed of solder
pieces. The peak length is the length of time that the
maximum pressure value is maintained after pressure
reaches the maximum. The maximum pressure is the state
in which the melted solder blocks the through-holes. Here,
the starting point is the point where “maximum pressure
* 0.9” is first reached from the start of soldering, and the
end point is the point where the pressure is less than the
“maximum pressure * 0.9.” Pressure drop time is defined
as the time required for the pressure to drop from the
maximum pressure (100%) to a specified percentage. The



minimum pressure (0%) is defined as the average value of
the pressures measured at 0.02 to 0.04 s of each soldering.
When the soldering is completed, the sleeve separated
from the board and the pressure drops from the maximum
to the minimum; the slope is expected to be gentle if the
through-hole is not filled because the incorrect solder in
the middle of the pin hinders the pressure drops. In this
study, the time (T90%, T80%, ..., T10%, T5%) that the time
to reach the specified pressure (90%, 80%,...,10%, 5%) is
used as a feature that expresses the pressure drop.

C. Classification
Classification is performed on 100 datasets using the

feature values described in Section IV-B. We compare the
combination of two learning algorithms (SVM and RVM)
and three kernels (RBF, Polynomial, and Linear.) We
perform 10-fold cross-validation 10 times while changing
the combination of hyperparameters for each of the 100
datasets. For tuning the hyperparameters, the training
function1 of the classification and regression training
(caret) package, which is an R language package, is used.
Accuracy is determined by distinguishing between cor-

rect and incorrect solder for each combination of the
algorithms and kernels with tuned hyperparameters. We
tune hyperparameters with TuneLength = 100 for the
RBF kernel of the SVM and three kernels of the RVM.
TuneLength is not used for the Polynomial kernel of the
SVM. For the linear kernel of the SVM, the range of 15
values of C is searched in increments of 0.001.

V. Results and discussion
A. Comparison between SVM and RVM
Table II shows the classification accuracy for each kernel

when using the SVM. We show the highest, lowest, and av-
erage accuracies when making predictions on 100 datasets.
In addition, the average of False Negative (FN), which
indicates an instance of erroneously predicting incorrect
solder as correct solder, is shown. The highest accuracy
is 100.0% for all kernels, and the average accuracy is
100.0% and average FN is 0.0% for the Polynomial and
Linear kernels. The largest value of the lowest accuracy
is 99.9% with the Polynomial kernel, which exhibits the
highest values across all indices. By contrast, the RBF
kernel achieves the worst values in terms of the lowest
and average accuracies and average FN, and the lowest
accuracy is 1.7% lower than that of the Polynomial kernel.
Table III shows the classification accuracy for each

kernel when using the RVM. The RBF kernel has the
highest values for all indices and identifies correct or
incorrect solder with an average accuracy of 98.6%. By
contrast, the Linear kernel exhibits the lowest values for
all indices, with an average accuracy of 93.1%, a difference
of 5.5% compared with the RBF kernel.

1https://www.rdocumentation.org/packages/caret/versions/6.0-
92/topics/train

TABLE II: Prediction accuracy at SVM

Kernel Accuracy FN
Maximum Minimum Average Average

RBF 100.0% 98.2% 99.7% 0.3%
Polynomial 100.0% 99.9% 100.0% 0.0%
Linear 100.0% 99.1% 100.0% 0.0%

TABLE III: Prediction accuracy at RVM

Kernel Accuracy FN
Maximum Minimum Average Average

RBF 99.6% 97.5% 98.6% 0.8%
Polynomial 94.3% 92.5% 93.5% 5.9%
Linear 93.7% 92.2% 93.1% 6.3%

Fig. 2 shows the prediction results on the 100th dataset
for the RBF, Polynomial, and Linear kernels when using
the RVM. The vertical axis shows the predicted score
for each solder, the higher value means the predicted
as correct soldering. The horizontal black line indicates
the threshold of 0.5. Incorrect solder with a score of
0–2 is indicated by ×, correct solder with a score of
4–7 (without back fillet) is indicated by 4, and correct
solder with a score of 8 or 9 (with back fillet) is indicated
by ◦. For all kernels, the number of solders classified as
incorrect decreases as the score increases, and all good
solder with an 8 or 9 (with back fillets) are classified as
correct. However, the prediction results for solder with a 4
(correct solder) and 2 (incorrect solder), corresponding to
the boundary between correct solder and incorrect solder,
are widely distributed vertically. Solders with a 0 or 1
(both incorrect) is incorrectly classified as correct because
the predicted scores are high for some data.
A comparison between kernels in RVM reveals that the

RBF kernel has the highest accuracy, its average accuracy
being 5% higher than those of the other kernels. The
results presented in Fig. 2 show that the Polynomial and
Linear kernels classify incorrect solder with a score of 1 or
2 as correct solder more frequently than the RBF kernel
does, and the cause of this misclassification should be
determined by analyzing the pressure waveform of the
soldering where the misclassification occurred.
A comparison between the combinations of algorithms

and kernels reveals that the Polynomial kernel of the SVM
has the highest accuracy. In addition, the SVM is more
accurate than the RVM regardless of the kernel being used.
The reason behind the low precision of the RVM needs to
be investigated in the future.

B. Hyperparameters and overfitting
Here, we consider whether a risk of overfitting exists in

the results of this study. Overfitting is a state in which a
constructed prediction model is excessively optimized for
the data used for training, and the model with overfitting
has lower prediction accuracy for other data. In this study,
10-fold cross-validation and hyperparameter tuning are
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Fig. 2: RVM prediction results

used to prevent overfitting, but the following two points
need further verification.

• Lack of tuning
In the training function of the caret package used
in the experiment, only three values are tested for
each of the three parameters; thus, a possibility of

TABLE IV: Prediction accuracy for All data

Sampling + 10-fold All data
# training data 801 890
# prediction data 89 2236

Accuracy
Maximum 100.0% 100.0%
Minimum 99.9% 97.9%
Average 100.0% 99.4%

insufficient tuning exists.
• Insufficient number of data on incorrect solder

In this study, to equalize the numbers of correct
solder and incorrect solder, 100 datasets are created
by randomly sampling correct solder and used for
evaluation. However, as the number of incorrect solder
is small, the data of incorrect solder are the same
in all datasets, and this may cause overfitting. We
implement countermeasures by using cross-validation
for each dataset; however, in the future, performing
random sampling and evaluating incorrect solder will
be necessary.

C. Prediction result for all data
Here, we examine the classification result with all cor-

rect/incorrect soldering data. In this experiment, training
is performed on each of the 100 datasets created in
section V-C, which means all incorrect soldering (440) and
sampled correct soldering (450) are used to train a model.
The classification target is 2236 correct soldering, which
is not sampled for training data. We select the SVM with
Polynomial kernel combination, the best performance in
Section . Hyperparameters are tuned for each dataset, and
other settings are the same as in section V.
The results are shown in Table IV. FN is not used in

this analysis because defective solder is not included in the
prediction target. The left column (sampling + 10-fold)
shows the same result as Table II for comparison. The
prediction result with all data shows the average and mini-
mum accuracies decreased by 0.6% and 2.0%, respectively.
The result indicates that some datasets used for training
do not contain every feature of correct soldering; correct
soldering that has unlearned features may not be properly
classified. The result also shows the highest Accuracy
was 100%, hence some training data may contained all
correct soldering features. In our sampling experiment
(see section V-C), half of the prediction target is correct
solderings, hence lack of some correct soldering features in
training data has a limited affect to the accuracy. On the
other hand, most soldering in practical setting is corecct
soldering, so training all various correct soldering features
is essential.

VI. Conclusion
In this study, we focused on a sleeve-soldering device,

extracted features from pressure changes in the sleeve,
and distinguish between correct and incorrect solder by



applying machine learning. We used the SVM and RVM
algorithms and compared the classification accuracy com-
bining three types of kernels: RBF, Polynomial, and Lin-
ear. The experiment results revealed that the SVM with
Polynomial kernel shows average accuracy was 100.0%,
and average FN was 0.0%.
In future work, classification accuracy at the boundary

between correct/incorrect solders (score 4 and 2) should
be improved. The prediction results of scores 4, 2, and 1
in RVM were widely distributed for correct and incorrect.
The result indicates a new feature is necessary to classify
these soldering. In addition, the presence or absence of
overfitting should be examined, and the effects should
be clarified by analyzing changes in the prediction model
owing to random sampling. In the experiments, a universal
board was used as the soldering target; however, the size of
the board to be soldered and the number of elements affect
the time required for preheating. Therefore, evaluating
PWB, which has different characteristics, and clarifying
the generalization performance of the proposed method
is an interesting future work. Oversampling the incorrect
solder data is a way to use all the correct solder data while
maintaining balance. In the experiment, correct solderings
were sampled to equalize the number of correct/incor-
rect solders, hence some feature in correct soldering is
not trained. Further improvement of accuracy through
training all correct solderings may expected by balancing
correct/incorrect soldering by oversampling.
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