
An Analysis of Program Comprehension Process
by Eye Movement Mapping to Syntax Trees

Haruhiko Yoshioka and Hidetake Uwano

Abstract To analyze the developers’ eye movement to the source code while un-
derstanding a program, researchers need to map eye movements to the position of
the source code being read. However, the eye movements are recorded as a list
of the display’s coordinates, hence scrolling and window movement on the editor
make mapping difficult. Further, to extract the comprehension behavior for differ-
ent source codes, it is necessary to consider the differences in control flow, format,
identifiers, and other factors, which is time-consuming during analysis. This study
analyzed eye movement during program comprehension tasks using our proposed
method. Our method identifies the word being looked at and converts it into a corre-
sponding syntax node. The experimental results show a significant difference in the
syntax node focused on between the understood/not-understood participant groups.
The experiment did not use the conventional eye movement analysis for individual
source codes and demonstrated the effectiveness of the proposed method.

Key words: Eye tracking, program comprehension, syntax analysis.

1 Introduction

Program comprehension is one of the research areas of software engineering. Dis-
covering effective and efficient ways to understand programs contributes to cost
savings in development and software testing. There have been several studies mea-
suring the process by which developers read source code to analyze program under-

Haruhiko Yoshioka
Department of Advanced Information Engineering National Institute of Technology, Nara College,
Yatacho22, Yamato-koriyama, Nara 639-1080, Japan, e-mail: ai1103@nara.kosen-ac.jp

Hidetake Uwano
Department of Information Engineering National Institute of Technology, Nara College, Yata-
cho22, Yamato-koriyama, Nara 639-1080, Japan, e-mail: uwano@info.nara-k.ac.jp

1

2 Haruhiko Yoshioka and Hidetake Uwano

standing [6, 13, 4, 2]. Extracting the comprehension patterns and strategies of good
developers improves education and development efficiency.

Common eye trackers used in the studies record the participants’ eye movements
as a time series of the display coordinates. Eye movements that remain for a certain
period of time in a certain area are integrated as fixations for analysis. Some stud-
ies analyzing eye movements relative to source code focused on changes in viewed
coordinate positions and found that experts tend to have more up-and-down eye
movement than novices[6, 3]. In the usual development environment, source code is
displayed in an editor or Integrated Development Environment (IDE). Therefore, the
source code displayed at the same coordinates can change by moving the position
of the window, scrolling in the code, changing tabs, etc. Some studies convert eye
movements into the lines and columns of the source code by recording the eye move-
ment and operation history[12, 5]. Eye movements expressed in lines and columns
can identify the eye at the same line or word even when operations differ among
participants, which makes it possible to extract features from different participants’
eye movements.

Meanwhile, two source code snippets with the same function but different for-
mat/control flows are hard to compare because they are recorded as different co-
ordinates or line/column numbers. Figure 1 shows two eye movements for source
code snippets implementing the same processing contents but using different control
syntaxes. The both codes calculate the sum from 1 to 10 and store it in the variable
“sum,” but (a) uses a “for” statement, while (b) uses a “while” statement. The cir-
cles in the figures represent the fixations of the eye movement (fixation points), and
the lines show the connections between consecutive fixation points. Both eye move-
ments show that participants look at the same process (initialization of index vari-
ables, condition expressions, increase of the index, and calculation of results) in the
same order. However, as their codes have different structures, the eye movements
are different: left to right for the “for” statement and up to down for the “while”
statement.

In this paper, we analyze eye movements using a method proposed in our previ-
ous research [15], converting the coordinate-wise eye movements into transitions to
nodes in a syntax tree. The method extracts the syntax tree of the source code and
determines the nodes that correspond to the eye movement. In the experiment, we
compare fixation ratio for each type of syntax element between the understood/not-
understood participant groups.

int sum = 0;
for (int i = 1;i <= 10;i++)
{

sum +=i ;
}

(a) for statement

int sum = 0;
int i = 1;
while (i <= 10) {

sum += i;
i++;

}

(b) while statement

Fig. 1 Eye movements for two source codes

Program Comprehension Analysis by Eye Movement Mapping to Syntax Trees 3

2 Related Research

Measurement of eye movements is well used to analyze the difference between
novice and skilled programmers. The state where a person’s gaze remains within
a certain range for a certain period of time is referred to as fixation, and its cen-
tral coordinate is the fixation point. Successive fixation points represent temporal
changes in the point of interest of the reader. Hauser et al. compared differences in
eye movement based on fixation points between beginner and expert developers[6].
Their results showed that the experts tended to read the source code non-linearly,
while beginners read it linearly.

Another definition used for eye movement analysis is Area of Interest (AOI).
The AOI is the rectangle or circle representing part of the region to the image or
text. If successive gazes are observed to be on the same AOI, eye movement is
integrated as a fixation at that AOI. Rodeghero et al. defined four types of AOIs in
source code: method declarations, method calls, control flows, and others, and they
analyzed the length of fixation time for each[13]. Their results revealed that skilled
Java programmers looked at method calls and control flows for a longer duration
than method declarations. Crosby et al. compared time for review between beginners
and experts for each AOI defined for words in the source code and found that experts
spend less time looking at comments than beginners[4]. Peitek et al. compared the
reading of beginners and intermediates by converting coordinate-based data into
lines and found that intermediate readers moved their eyes to lines at the top of the
source code more frequently[12].

Displaying the source code as an image eliminates the changes of scrolling and
tab switching, and many analyses have focused on short source code or code frag-
ments that can be displayed on a single screen. Meanwhile, some studies have
created experimental programs to acquire line/column data from eye movements
from coordinates based on operation history, such as scrolling or switching between
displays of multiple source codes. The open source software iTrace converts eye-
tracking information from coordinates to source code line/column numbers1. iTrace
has been implemented as a plug-in for Eclipse, and it can be used to perform eye
movement analysis[5, 1, 14]. Kevic et al. used iTrace on three bug-fixing tasks. They
found that developers focus on small parts of methods that are often related to data
flow. Eye movement within methods showed developers chase variables flows.[9, 8].

3 Eye Movement Mapped to Syntax Trees

Our proposed method converts the eye movement from the coordinate unit into tran-
sitions to the nodes of a syntax tree generated from the source code. Figure 2 illus-
trates an overview of the method. The squares represent the modules constituting the
method, and the thin arrows represent the data flow. The eye movement of the par-

1 https://www.i-trace.org

4 Haruhiko Yoshioka and Hidetake Uwano

Eye Tracker
Coordinate

Line/Column
Converter

Syntax Tree/Eye
Linker

Eye Movement

Review
Parser

Source Code

Source Code

Experimenter

Participant

Source Code Syntax Tree

Time Display X Display Y

28:54.1 121 313

28:54.1 123 351

28:54.2 159 363

Time File Line Column

28:54.1 Main.java 1 13

28:54.1 Main.java 2 12

28:54.2 Main.java 2 21

Time Syntax

28:54.1 classDeclaration

28:54.1 methodDeclaration

28:54.2 expression

Fig. 2 Proposed Method [15]

ticipants reading the source code is measured using the eye tracker. The eye tracker
outputs the gaze position at each point in time as coordinates on the display (e.g.,
X:121, Y:313). The Coordinates Line/Column Converter takes the eye movements
in units of coordinates and the source code as inputs, then outputs the eye movement
as source code name and line/column number (e.g., Main.java, line:1, column:13).
The method extracts the word of the source code from the line/column number and
maps it to a node on the syntax tree through syntax analysis. Consecutive fixations
on the same word are combined into one. The Syntax Tree/Eye Linker receives the
syntax tree and line/column eye movement to output the syntax node-represented
eye movement. The parser output includes the line/column numbers representing
the position of each word in the source code, the number of characters, and the
syntax type of the word. The Syntax Tree/Eye Linker combines the eye movement
converted into line/column numbers into node units on the syntax tree by mapping
the line/column numbers of each node from the parser result.

The proposed method was implemented in Python, using iTrace to implement the
“Coordinates Line/Column Converter” to extract line/column numbers from the eye
movement coordinate data. ANTLR2, an open-source parser generator, was used to
implement the “Syntax Tree/Eye Linker,” with Java3 as the target language. Using
the corresponding parser allowed us to analyze eye movement for source code writ-
ten in other programming languages. We also implemented the following functions
to assist analysis:

• visualization of eye movement on the source code
• calculates fixation time to each syntax tree node and output in formats supported

by Graphviz (PNG, PDF, EPS, SVG, etc.)

2 https://www.antlr.org
3 https://github.com/antlr/grammars-v4/tree/master/java/java

Program Comprehension Analysis by Eye Movement Mapping to Syntax Trees 5

Table 1 Output example of eye movement

ID Time Eye Movement
1 24:54.1 Main method / For stm / Initialization expression / i
2 24:54.1 Main method / For stm / Conditional expression / i
3 24:54.2 Main method / For stm / Update expression / ++
4 24:54.2 Main method / For stm / Block / Sum

1 public class Main {
2 static int[] coin = {1, 5, 10, 50,
3 100, 500};
4
5 public static void main(String arg[]) {
6 int x = 70;
7
8 int r = method1(x, 5);
9

10 System.out.printf("%d\n", r);
11 }
12
13 static int method1(int x, int i) {
14 if(x == 0)
15 return 1;
16
17 else if(x < 0)
18 return 0;
19
20 else if(i < 0)
21 return 0;
22
23 else {
24 return method1(x-coin[i], i)
25 + method1(x, i-1);
26 }
27 }
28 }

Fig. 3 Task 13 Source Code

Table 1 presents an example of the eye movement in Figure 1(a) transformed
using our method. Each line of the table represents the information of the node
corresponding to a word where the eye movement was fixated. The eye movement
columns indicate the node representing the fixated word and its parent nodes; ID1
is the fixation on i in the initialization expression of the “for” statement in the main
method.

Figures 3 and 4 illustrate examples of the source code used in our experiments
and the syntax tree generated from the source code. The syntax tree shows only the
node below the node corresponding to the declaration of method1 (methodDecla-
ration), with the second and subsequent “if” statements (line 17 in Fig. 3) deleted.
The leaf nodes in Figure 4 represent words of the source code, and the inner nodes
represent syntax elements to which the child nodes belong. For example, the node

6 Haruhiko Yoshioka and Hidetake Uwano

m
e
t
h
o
d
D
e
c
l
a
r
a
t
i
o
n

t
y
p
e
T
y
p
e
O
r
V
o
i
d

m
e
t
h
o
d
1

f
o
r
m
a
l
P
a
r
a
m
e
t
e
r
s

m
e
t
h
o
d
B
o
d
y

t
y
p
e
T
y
p
e

p
r
i
m
i
t
i
v
e
T
y
p
e

i
n
t

(
f
o
r
m
a
l
P
a
r
a
m
e
t
e
r
L
i
s
t

)

f
o
r
m
a
l
P
a
r
a
m
e
t
e
r

,
f
o
r
m
a
l
P
a
r
a
m
e
t
e
r

t
y
p
e
T
y
p
e

v
a
r
i
a
b
l
e
D
e
c
l
a
r
a
t
o
r
I
d

p
r
i
m
i
t
i
v
e
T
y
p
e

i
n
t

x

t
y
p
e
T
y
p
e

v
a
r
i
a
b
l
e
D
e
c
l
a
r
a
t
o
r
I
d

p
r
i
m
i
t
i
v
e
T
y
p
e

i
n
t

i

b
l
o
c
k

{
b
l
o
c
k
S
t
a
t
e
m
e
n
t

}

s
t
a
t
e
m
e
n
t

i
f

p
a
r
E
x
p
r
e
s
s
i
o
n

s
t
a
t
e
m
e
n
t

e
l
s
e

(
e
x
p
r
e
s
s
i
o
n

)

e
x
p
r
e
s
s
i
o
n

=
=

e
x
p
r
e
s
s
i
o
n

p
r
i
m
a
r
y

x

p
r
i
m
a
r
y

l
i
t
e
r
a
l

i
n
t
e
g
e
r
L
i
t
e
r
a
l

0

r
e
t
u
r
n

e
x
p
r
e
s
s
i
o
n

;

p
r
i
m
a
r
y

l
i
t
e
r
a
l

i
n
t
e
g
e
r
L
i
t
e
r
a
l

1

Fig. 4 Syntax tree from task 13 source code

on the left (formalParameter) represents a temporary parameter consisting of the
two words (int, x) in line 13 of Figure 3 and is part of method1 (methodDeclaration)

Program Comprehension Analysis by Eye Movement Mapping to Syntax Trees 7

in line 13. The method converts eye movement into information that combines the
word on the fixation, line/column numbers, and all the syntax elements to which the
word belongs. Including information about high-level syntax elements allows us to,
for example, capture the eye movement for line 15, column 14 in Figure 3 with the
following different granularities:

• Fixation at word “1”
• Fixation at return statement
• Fixation at if statement
• Fixation at Method1
• Fixation at Main class

Using this proposed method removes differences in display position and source
code format by expressing eye movement as transitions to the nodes of the syntax
tree. The output includes information on the block, method, and class to which the
fixated word belongs, so it is possible to extract patterns of eye movement at dif-
ferent granularities according to the purpose of analysis. For example, method-wise
reading patterns can be extracted by analyzing eye movement for words belong-
ing to MethodDeclaration, MethodBody, and MethodCall. The method also enabled
feature analysis and pattern mining from a vector that expresses the multiple syntax
nodes for a single word.

4 Experiment

Participants were presented with a programming task written in Japanese and Java
languages, and their eyes were tracked as they understood the contents of the task.
The participants were 14 students from the author’s organization, aged between 19
and 21, all of whom had attended courses in basic Java programming.

4.1 Experimental environment and tasks

The experiment was conducted in a quiet room with only one participant and two
experimenters. An eye tracker, task presentation PC, and recording PC were used in
the experiment. The eye tracker used was the Tobii Eye Tracker 4C.

Each participant was given sixteen tasks, consisting Java source code and cor-
responding specifications written in Japanese. The participant were asked to verify
their understanding to the source code, by asking “What will be the value when line
6 is executed the second time?” verbally. If the answers matched the prepared an-
swers, the participants were assumed to understand the source code correctly. If the
answer was incorrect or the participants exceeded the time limit, they were assumed
to fail. The participants were not informed their responses were correct or not.

8 Haruhiko Yoshioka and Hidetake Uwano

Table 2 Tasks used in the experiment

Task Specifications
1 Factorial Calculate factorial
2 SearchMax Search for the maximum value
3 PrimeNum Determine prime numbers
4 SearchMedian Search for the median
5 Power Calculate power
6 Swap Swap two numbers
7 Substring Determine if the specified string is contained
8 ReverseString Reverse a string
9 TowerOfHanoi Tower of Hanoi
10 NumOfRoute Find the number of routes
11 Permutation Enumerate all permutations
12 Combination Find combinations from the asymptotic formula
13 PayMoney Find the combination of coins to pay
14 StrCombination Find the combination of strings
15 CloudSim Simulate cloud movement

16 lcm gcd Find the least common multiple
and greatest common divisor

The difficulty and time limit of the task were adjusted to measure cases of un-
derstanding or not understanding the program to the same extent. Table 2 presents
a list of the tasks. Eight easy tasks (1-8 in Table 2) contain easy-to-understand
source code, using only the main method, a single iterative statement, and condi-
tional branches. Eight difficult tasks (9-16 in Table 2) contain complex source code
expected to be difficult to understand in a short duration, as it uses multiple methods
and recursive structures. Using preliminary experiments, the time limit was set to 2
minutes and 30 seconds, which was sufficient for understanding easy tasks and in-
sufficient for difficult tasks. The order of the tasks was counterbalanced to consider
the order effect.

4.2 Analysis

We obtain the fixation ratio for each syntax type and compare the participants who
answered the task correctly and incorrectly. The parser generated by ANTLR out-
puts 105 syntax types (semantic nodes) and corresponding words (word nodes) for
the Java source code. The tasks used in the experiment contained 41 semantic nodes.
The analysis in this study redefines the 21 semantic nodes listed in Table 3 to focus
on the control structure and eye movement by sentence. If a word node was con-
nected to a semantic mode of a syntax type that the redefinition excluded, the word
node was connected to the parent node, and the fixation time was added to the parent
node. Figure 5 shows an example of a syntax tree with the fixation time represented
by the redefined syntax types. The first line of each node represents the name of the
semantic node, the second line the words corresponding to the node, and the third

Program Comprehension Analysis by Eye Movement Mapping to Syntax Trees 9

Table 3 Syntax types for analysis

Syntax type Description
blockStatement Declaring and initializing variables

classBodyDeclaration Declaring fields and methods
forCond Conditional expressions for “for”

forInit Initialization expression for “for”
forProcess Statement belonging to for block

forStm Word “for”
forUpdate Variable expression for “for”

formalParameterList Temporary parameters for method
ifCond Conditional expression for “if”

ifProcess Statement belonging to an “if” block
ifStm Word “if, else”

indent Indent (blank, tab)
newLine Empty line
printStm print statement, println statement

space White space separating consecutive words
statement Assignment, method call, return statement

typeDeclaration Class declaration
whileCond Condition expression for “while”

whileProcess Statement belonging to a “while” block
whileStm Word “while”

whileUpdate “++” of a “while” block
or statement including “-”

line the total fixation time (seconds and percentage value) for the node. The fixation
time for the parent node does not include the time for the child nodes.

5 Results and Discussion

224 program comprehension tasks (14 participants × 16 tasks) were recorded, then
we excluded 24 cases of measurement error and analyzed the remaining 200. Fig-
ure 6 shows the percentage of fixation time for each syntax type for participants
who answered the program comprehension task correctly and incorrectly. The fig-
ure illustrates the average fixation time for each syntax type among the participants’
fixation times at the words they focused on in each task. The time looking away
from the screen or blinking is not included. The figure describes the top 14 with
the highest fixation rate, and other syntax types are considered “others.” For both
the correct and incorrect, the most attention was given to space (space between
words) and blockStatement (declaration and initialization of variables): 16.9% and
10.5–10.9%, respectively, but there was no significant difference between the two
groups. The larger fixation ratio for spaces may be attributed to the fact that spaces
account for a large percentage of the source code. Eye movements of correct re-
sponses a lot of percentages to forInit (initialization expression for “for”), forPro-
cess (statement in for block), ifCond (conditional expression for if), ifProcess (state-

10 Haruhiko Yoshioka and Hidetake Uwano

typeDeclaration
public class Main {}

0.00s 0.00%

classBodyDeclaration
static int[] coin = {1, 5, 10, 50,

100, 500};
4.77s 12.23%

classBodyDeclaration
public static void main() {}

0.85s 2.18%

classBodyDeclaration
static int method1() {}

0.83s 2.13%

formalParameterList
String arg[]
0.97s 2.49%

blockStatement
int x = 70;
0.06s 0.15%

blockStatement
int r = method1(x, 5);

2.96s 7.59%

printStm
System.out.printf("%d\n", r);

1.89s 4.85%

formalParameterList
int x, int i
1.65s 4.23%

ifStm
if else

0.00s 0.00%

(x == 0)
0.41s 1.05%

ifProcess
return 1;

3.41s 8.75%

ifStm
if else

0.90s 2.31%

(x < 0)
0.45s 1.15%

ifProcess
return 0;

4.10s 10.52%

ifStm
if else

0.84s 2.15%

ifCond

ifCond

ifCond

(i < 0)
0.90s 2.31%

ifProcess
return 0;

2.81s 7.21%

ifProcess
{}

0.22s 0.56%

ifProcess
return method1(x-coin[i], i)

+ method1(x, i-1);
10.97s 28.14%

Fig. 5 Fixation time for each syntax node

ment in if block), and whileProcess (statement in while block). On the other hand,
eye movements of incorrect responses a lot of percentages to classBodyDeclara-
tion (declaration of field and method), formalParameterList (temporary parameters
for method), and printStm (print statement). Significant differences in the average
values for correct and incorrect responses were observed for ifCond (7.8% correct,
5.6% incorrect), formalParameterList (0.8% correct, 3.4% incorrect), and printStm
(3.8% correct, 6.3% incorrect) (p < 0.05, t-test).

Participants who answered correctly focused more on syntax elements that were
all control statements that control program operation and their processing contents,
which may have been important elements in the task of understanding the process-
ing contents from the presented source code. Meanwhile, participants who answered
incorrectly paid more attention to syntax elements that were class declarations, tem-
porary parameters of methods, and print statements displaying the results of pro-
cessing, suggesting that they paid more attention to the relationship between input
and output for processing.

Next, we compare the distribution of fixation rate between those who gave cor-
rect and incorrect answers in one task. The importance of even the same syntax
elements for program understanding varies depending on the task, so the proportion

Program Comprehension Analysis by Eye Movement Mapping to Syntax Trees 11

0 20 40 60 80 100
Fixation Ratio[%]

Correct

Incorrect

b
lo

ck
S
ta

te
m

en
t

cl
as

sB
o
d
yD

ec
la

ra
ti
o
n

fo
rI

n
it

fo
rP

ro
ce

ss
fo

rm
al

P
ar

am
et

er
Li

st
ifC

o
n
d

ifP
ro

ce
ss

n
ew

Li
n
e

p
ri

n
tS

tm

sp
ac

e

st
at

em
en

t

w
h
ile

C
o
n
d

w
h
ile

P
ro

ce
ss

w
h
ile

U
p
d
at

e

o
th

er

Fig. 6 Fixation ratio for each syntax type

of attention varies by task. The source code for Task 13 in Figure 3 is a program to
find the number of possible coin combinations that can make up the money specified
in line 6. For Task 13, 4 participants understood and 10 participants failed. Figure 7
shows the percentage of fixation time for each syntax type for correct and incorrect
for Task 13.

For both, there was a high percentage of fixation time for 1)ifProcess, which
corresponds to the return statement, 2)classBodyDeclaration, which includes the
declaration of a coin array, and 3)spaces. Participants who answered correctly paid
the highest percentage of attention to the ifProcess (22.0% correct, 14.7% incorrect)
and indent (5.2% correct, 0.9% incorrect), while incorrect responders focused on
spaces (21.7% correct, 26.2% incorrect), ifCond (4.8% correct, 9.5% incorrect),
and formalParameterList (2.9% correct, 5.8% incorrect). There was a significant
difference (p < 0.05, t-test) between the average for correct and incorrect responses
for ifCond and spaces.

The program for this task calculates the number of coin combinations that will
result in the amount of money stored in variable x by recursively calling method1.
The first argument for method1 represents the specified amount of money, and the
second argument is the starting position of the search in the coin array (Fig. 3, line
2). Line 24 is a recursive call for the specified amount of money minus the number
of coins to be searched (argument x-coin[i], i) and a call that moves the search
position for coins by one (argument x, i1). IfProcess at lines 15, 18, 21, 24, and
25 had the largest fixation ratio by participants who answered the task correctly.
These lines are considered important for determining whether a coin combination
can be counted based on the arguments of each recursive call. Conversely, ifCond,
which had a significantly larger fixation ratio for those who answered incorrectly,
corresponds to the conditionals in lines 14, 17, and 20.

Table 4 compares the fixation ratio of correct and incorrect answers for each ele-
ment. Participants who gave the correct response had a higher percentage for ifPro-
cess compared to its counterpart ifCond, while participants with incorrect responses
showed the same or higher percentage for ifCond. Future research is required to
clarify the relationship between the contents of individual tasks and percentage of
attention to syntax elements. Further, there was a significant difference between

12 Haruhiko Yoshioka and Hidetake Uwano

Table 4 Fixation ratio for each element of method1
line Item Code Correct Incorrect
14 ifCond x == 0 3.2% 5.2%
15 ifProcess return 1 9.9% 5.7%
17 ifCond x < 0 1.4% 4.3%
18 ifProcess return 0 3.8% 2.6%
20 ifCond i < 0 2.1% 2.3%
21 ifProcess return 0 5.1% 1.4%
24 ifProcess return method1(...) ... 14.2% 11.5%

0 20 40 60 80 100
Fixation Ratio[%]

Correct

Incorrect

b
lo

ck
S
ta

te
m

en
t

cl
as

sB
o
d
yD

ec
la

ra
ti
o
n

fo
rm

al
P
ar

am
et

er
Li

st

ifC
o
n
d

ifP
ro

ce
ss

ifS
tm

in
d
en

t
n
ew

Li
n
e

p
ri

n
tS

tm

sp
ac

e

ty
p
eD

ec
la

ra
ti
o
n

Fig. 7 Fixation ratio for each syntax type in task 13

the fixation ratio to space. The result suggests that correctly answered participants
focused their attention on the specific parts of the source code, while incorrectly
answered participants read the entire source code in an exploratory manner; the fix-
ation was separated because the space is the most frequent character in the source
code.

6 Conclusion

In this study, we analyzed the eye movements while performing a program compre-
hension task. We used a method that converts the eye movements recorded as the
display’s coordinates to the eye movements to syntax tree nodes. The percentage
of fixation time for each syntax element was compared based on data from 200 eye
movements recorded from the experiment. The experiment revealed that participants
who responded correctly to the program comprehension tasks spent significantly
more time at the conditional expressions “if” and significantly less time on the tem-
porary parameters of the method and the print statement. Complex tasks, such as
recursion, also had the participants look more at statements within “if” statements
than the conditional expression. The results suggest that there is a relationship be-
tween program comprehension and important syntactic elements for understanding,

Program Comprehension Analysis by Eye Movement Mapping to Syntax Trees 13

and we need further research on whether causal relationships and instructions fo-
cusing on specific syntactic elements can promote comprehension in programming.

In this study, the purpose was to understand the code. The code reading method
depends on the purpose. For example, when participants search for syntax errors,
they will scan all words because of searching for inaccurate reserved words. In fu-
ture work, We compare eye movement patterns during different reading purposes
such as fault detection in future work.

The analysis performed in this study summarized the fixation time for each syn-
tax element into a higher syntax element based on the definitions in Section 4. Mean-
while, it is possible to associate each word constituting the source code with multiple
meanings on the syntax tree. For example, looking at x in line 14 in Fig. 3 can also
be interpreted as looking at the “if” statement that the entire line 14 comprises. Sim-
ilarly, it can also be seen as looking at the “if” block or method1 in the 14th line.
The duration of fixation and number of fixations for a word are therefore counted
for all the syntax elements that correspond to that word, which makes it difficult to
calculate the percentage. Calculations in this paper were based on fixation for the
lowest-level syntax element to which each word belonged to avoid duplicates. De-
veloping and analyzing a method to calculate the percentage of fixations for multiple
syntax elements is an important task for future research.

Although there was no significant difference, there was a difference in the fix-
ation ratio at the indent between the correct (5.2%) and incorrect (0.9%) in Task
13 (shown in Section 5). The effects of indentation and its length on the readabil-
ity of source code have been investigated for many years[10, 7] and are still under
research[11]. The source code of Task 13 (Figure 3) consists of two methods (main
and method1). Method1 is a program with a complex structure compared to other
tasks, consisting of “if-elseif-else” statements and recursive calls. The results of this
experiment suggest that participants who correctly understood the source code of
Task 13 had a fixation on indents when focusing on the overall program structure.
Future research will perform a detailed analysis of the fixation ratio based on the
correct/incorrect answers for each task and on the characteristics of the source code.

Acknowledgements This research was funded by JSPS Research Grant JP21K11842.

References

1. Abbad-Andaloussi, A., Sorg, T., Weber, B.: Estimating developers’ cognitive load at a fine-
grained level using eye-tracking measures. In: 2022 IEEE/ACM 30th International Conference
on Program Comprehension (ICPC), pp. 111–121 (2022). DOI 10.1145/3524610.3527890

2. Bertram, I., Hong, J., Huang, Y., Weimer, W., Sharafi, Z.: Trustworthiness perceptions in code
review: An eye-tracking study. In: Proceedings of the 14th ACM / IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM), ESEM ’20. Association
for Computing Machinery, New York, NY, USA (2020). DOI 10.1145/3382494.3422164.
URL https://doi.org/10.1145/3382494.3422164

3. Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J.H., Schulte, C., Sharif, B., Tamm,
S.: Eye movements in code reading: Relaxing the linear order. In: Proceedings of the 2015

14 Haruhiko Yoshioka and Hidetake Uwano

IEEE 23rd International Conference on Program Comprehension, ICPC ’15, p. 255–265. IEEE
Press (2015)

4. Crosby, M., Stelovsky, J.: How do we read algorithms? a case study. Computer 23(1), 25–35
(1990). DOI 10.1109/2.48797

5. Guarnera, D.T., Bryant, C.A., Mishra, A., Maletic, J.I., Sharif, B.: Itrace: Eye tracking
infrastructure for development environments. In: Proceedings of the 2018 ACM Sym-
posium on Eye Tracking Research & Applications, ETRA ’18. Association for Comput-
ing Machinery, New York, NY, USA (2018). DOI 10.1145/3204493.3208343. URL
https://doi.org/10.1145/3204493.3208343

6. Hauser, F., Schreistter, S., Reuter, R., Mottok, J.H., Gruber, H., Holmqvist, K., Schorr, N.:
Code reviews in c++: Preliminary results from an eye tracking study. In: ACM Sympo-
sium on Eye Tracking Research and Applications, ETRA ’20 Short Papers. Association for
Computing Machinery, New York, NY, USA (2020). DOI 10.1145/3379156.3391980. URL
https://doi.org/10.1145/3379156.3391980

7. Kesler, T.E., Uram, R.B., Magareh-Abed, F., Fritzsche, A., Amport, C., Dunsmore, H.: The
effect of indentation on program comprehension. International Journal of Man-Machine
Studies 21(5), 415–428 (1984). DOI https://doi.org/10.1016/S0020-7373(84)80068-1. URL
https://www.sciencedirect.com/science/article/pii/S0020737384800681

8. Kevic, K., Walters, B., Shaffer, T., Sharif, B., Shepherd, D., Fritz, T.: Eye gaze and interaction
contexts for change tasks observations and potential. J. Syst. Softw. 128(C), 252–266 (2017).
DOI 10.1016/j.jss.2016.03.030. URL https://doi.org/10.1016/j.jss.2016.03.030

9. Kevic, K., Walters, B.M., Shaffer, T.R., Sharif, B., Shepherd, D.C., Fritz, T.: Tracing software
developers’ eyes and interactions for change tasks. In: Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, p. 202–213. Association
for Computing Machinery, New York, NY, USA (2015). DOI 10.1145/2786805.2786864.
URL https://doi.org/10.1145/2786805.2786864

10. Miara, R.J., Musselman, J.A., Navarro, J.A., Shneiderman, B.: Program indentation and com-
prehensibility. Commun. ACM 26(11), 861–867 (1983). DOI 10.1145/182.358437. URL
https://doi.org/10.1145/182.358437

11. Oliveira, D., Santos, R., Madeiral, F., Masuhara, H., Castor, F.: A systematic literature
review on the impact of formatting elements on code legibility. Journal of Systems
and Software 203, 111,728 (2023). DOI https://doi.org/10.1016/j.jss.2023.111728. URL
https://www.sciencedirect.com/science/article/pii/S0164121223001231

12. Peitek, N., Siegmund, J., Apel, S.: What drives the reading order of programmers? an eye
tracking study. In: Proceedings of the 28th International Conference on Program Compre-
hension, ICPC ’20, p. 342–353. Association for Computing Machinery, New York, NY, USA
(2020). DOI 10.1145/3387904.3389279. URL https://doi.org/10.1145/3387904.3389279

13. Rodeghero, P., McMillan, C., McBurney, P.W., Bosch, N., D’Mello, S.: Improving automated
source code summarization via an eye-tracking study of programmers. In: Proceedings of the
36th International Conference on Software Engineering, ICSE 2014, p. 390–401. Association
for Computing Machinery, New York, NY, USA (2014). DOI 10.1145/2568225.2568247.
URL https://doi.org/10.1145/2568225.2568247

14. Sharif, B., Mansoor, N.: Humans in empirical software engineering studies: An experience
report. In: 2022 IEEE International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp. 1286–1292 (2022). DOI 10.1109/SANER53432.2022.00154

15. Yoshioka, H., Uwano, H.: Automatic mapping of syntax trees and eye movement for semantic-
based program comprehension pattern extraction. International Symposium on Advances in
Technology Education (ISATE) 2022 (2022)

