
Difference Syntax Trees for Characterising Student
in Programming Course

1st Kouta Aoki
Department of Advanced Information Engineering.

National Institute of Technology (KOSEN), Nara College
Nara, Japan

ai1139@nara.kosen-ac.jp

2nd Hidetake Uwano
Department of Information Engineering.

National Institute of Technology (KOSEN), Nara College
Nara, Japan

uwano@info.nara-k.ac.jp

Abstract—The Online Judge System (OJS) is well-used in
programming courses at universities or for self-learning. The
system compiles and executes a set of source codes submitted
in response to an assignment and automatically grades them
by comparing the output results and expectations. In university
programming courses, especially courses for beginners, students
repeatedly modify and submit source code until they receive
a 100-point score. The OJS stores every source code until
each student gets 100 points on an assignment; the differences
through the first to last submissions contain helpful information
to estimate students’ understanding of syntax or learning units
in the course. In this study, the authors propose difference flow,
a series of syntax trees extracted from the differences between
the final submission and every previous one. The difference flow
contains the node where the difference with the 100-point source
code and each parent node; hence, its features (such as the
count of each syntax node throughout the flow) may indicate
the students’ understanding.

Index Terms—Programming education, Difference flow, Syntax
tree

I. INTRODUCTION

Online Judge System (OJS) is a well-used system that
automatically grades submitted source code. The OJS is used
in self-learning and programming courses at universities, and
some research applies the OJS to programming education [1]
[2]. In an educational use, a student submits a source code
that corresponds to the assignments provided by the teachers.
The OJS compiles and executes the submitted source code
and provides feedback, such as correct/incorrect test cases,
scores, and compile/run-time errors. Based on the feedback,
students repeatedly modify and submit the source code, aiming
to implement a 100 (full marks) source code.

OJS stores every source code until each student gets 100
points on an assignment. In this study, the authors focus on
the source code differences between versions from a student.
Several studies analyze the characteristics of editing behavior
based on source code differences [3] [4]. Some beginners in
programming courses repeatedly modify the source code for a
single problem without understanding the cause when the code
works differently from the expected behavior. The differences
until the student gets 100 scores are helpful information for
identifying a lack of understanding of a specific syntax element
or learning unit.

…

Gumtree

V1

V1 – VN V2 – VN VN-1 – VN

V2 VN

Difference Flow Extractor

VN

score 100

V2

score 50

V1

score 30

V1 - VN 

diff

V2 - VN 

diff

…

…

Fig. 1. Our proposal tool

In this paper, the authors propose a tool to automatically
extracts the differences between syntax trees parsed from
the source codes which the student takes 100 scores and all
previous for one assignment. The difference in syntax trees
expresses a single edit as edits to different granularities, such
as arithmetic expressions, blocks, and methods. For example,
three continuous differences 1) i=i+1, 2) print(i), 3)
i<10 are also expressed as edits to lines belonging to the
same for block. The syntax tree-based differences indicate
that each edit belongs to the same block, method, and class. A
frequent syntax element in the sequence of differences between
the source codes of 100 scores and all previous indicates a
block where the error cannot be corrected during their work,
i.e., the student needs any support or review. In this paper, we
define a difference flow as a different sequence of syntax trees
between the final submission and each previous submission.



FN - 4

for 

stm.

var. dec. 

exp.
block

infix 

exp.

exp.

stm.

mtd.

inv.

mtd. inv. 

args.

i    i - 1

printlnmtd. inv. 

recv.

System.out

int
var. dec. 

flag.

i 10

i >= 1

FN - 3

for 

stm.

var. dec. 

exp.
block

infix 

exp.

exp.

stm.

mtd.

inv.

mtd. inv. 

args.

i - 1

printlnmtd. inv. 

recv.

System.out

int
var. dec. 

flag.

i 10     9

i >= 1

FN - 2

for 

stm.

var. dec. 

exp.
block

infix 

exp.

exp.

stm.

mtd.

inv.

mtd. inv. 

args.

i - 1

println
mtd. inv. 

recv.

System.out

int
var. dec. 

flag.

i 9

i >=    > 1

FN - 1

for 

stm.

var. dec. 

exp.
block

exp.

stm.

mtd.

inv.

mtd. inv. 

args.

i - 1

println
mtd. inv. 

recv.

System.out

int
var. dec. 

flag.

i

infix 

exp.

i > 1

9    10

Fig. 2. An example of difference flow

II. DIFFERENCE FLOW

Figure 1 shows the output process of the difference flow.
Input every version of the source code for the same assignment
from one student, Gumtree [5] outputs 1) the syntax tree for
each version, and 2) the diff between the final submission (VN )
and each of the previous versions (V1 . . . VN−1). We use type
(add, delete, move, modify), row, line, and text from the diff
information. The difference flow extractor integrates them and
outputs difference flow. Figure 2 shows a part of the difference
flow as an example. Fx is the difference syntax tree of Vx and
VN , while FN−1 shows a last difference. The red text shows
a difference between VN , the orange node shows a difference
from the previous version, and the gray node shows there is
no change until VN .

The example shows that 1) a series of edits are concen-
trated to the same for block, and 2) the student seeks a
correct set of initialize, condition, and loop statements. The
differential flow indicates that the student does not fully
understand the relationship between the conditional expression
of the for statement and the number of loops. Based on this
information, teachers can provide additional instruction to the
student focusing on the conditional expressions and the loop
number. Compared with ordinal text diff from continuing two
versions, the difference flow contains parent nodes of each
changed node. Hence, the teacher to easily understand that
the series of edits is concentrated in the same block, even if
the changed lines are located in distant places. It is noteworthy
that the difference flow is represented in XML format; OJS can
systematically analyze how each student’s edit is concentrated
on each syntax element, such as counting the number of
each syntax element in the difference flow. Using the analysis
result, OJS can provide appropriate support for the student,
such as suggestions for supplemental assignments about for
statemetns.

III. FUTURE WORK

The difference flow shows the process of a student seeking
their full mark score source code for an assignment. The future

work with the difference flow is as follows.
• Extraction of student’s stuck

The difference flow contains multiple changes for the
same place in the source code until the full score is
obtained or until non-corrected errors across multiple
source code versions.
In the example shown in Figure 2, the number of Vari-
ableDeclarationFragment (initialization of index variable)
and InfixExpression (loop condition) in the for state-
ment was high, indicating that the student was stuck
specifying the appropriate index value corresponding to
the required process. By parsing the difference flow’s
XML and counting the frequency of node occurrences,
it is possible to detect a student’s stuck syntax elements
and/or specific blocks.

• Scoring understanding of learning unit
Difference flow of multiple assignments from a single
student enables automatic scoring of understanding for
learning units (such as syntax elements) in programming
courses. Syntax-wise integration of multiple difference
flows enables a more accurate assessment of particular
syntax elements, such as else-if ladder, without well-
designed Unit Tests.

REFERENCES

[1] H. Sun, B. Li, and M. Jiao, ”YOJ: An online judge system designed for
programming courses,” In Proceedings of the 9th International Conference
on Computer Science Education (ICCSE2014), pp.812–816, 2014

[2] W. Zhou, Y. Pan, Y. Zhou, and G. Sun, ”The framework of a new online
judge system for programming education,” In Proceedings of ACM Turing
Celebration Conference (TURC2018), pp.9–14, 2018

[3] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Martin,
and Y. L. Traon, ”FixMiner: Mining relevant fix patterns for automated
program repair,” Empirical Software Engineering Vol.25, No.3, pp.1980–
2024, 2020

[4] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen and H.
Rajan, ”A study of repetitiveness of code changes in software evolution,”
2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp.180–190, 2013

[5] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
”Fine-grained and accurate source code differencing,” In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering (ASE2014), pp.313–324, 2014


