
Analyzing Individual Performance of Source Code Review  
Using Reviewers’ Eye Movement 

 
 

Hidetake Uwano, Masahide Nakamura, Akito Monden and Ken-ichi Matsumoto 
 

Nara Institute of Science and Technology 
{hideta-u, masa-n, akito-m, matumoto}@is.naist.jp 

 
 
Abstract 
This paper proposes to use eye movements to characterize the 
performance of individuals in reviewing source code of computer 
programs. We first present an integrated environment to measure 
and record the eye movements of the code reviewers. Based on the 
fixation data, the environment computes the line number of the 
source code that the reviewer is currently looking at. The envi-
ronment can also record and play back how the eyes moved during 
the review process. We conducted an experiment to analyze 30 
review processes (6 programs, 5 subjects) using the environment. 
As a result, we have identified a particular pattern, called scan, in 
the subjects' eye movements. Quantitative analysis showed that 
reviewers who did not spend enough time for the scan tend to take 
more time for finding defects. 
 
Keywords:  eye movement, source code review, human factor, 
computer program 
 
CCS:  H.1.2 [Models and Principles]:  User/Machine Systems 
– Human factors; D.2.5 [Software Engineering]:  Testing and 
Debugging – Code inspections and walk-throughs. 
 
1 Introduction 
Source code review (or simply code review) is peer review of 
source code of computer programs. It is intended to find and fix 
defects (i.e., bugs) overlooked in early development phases, im-
proving overall code quality [Boehm 1981]. Basically, the code 
review is an off-line task conducted by human reviewers without 
compiling or executing the code. In the code review, a reviewer 
reads the code, understands the behavior, and detects and fixes 
defects if any. Especially in developing large-scale software ap-
plications, the code review of individual modules is vital, since it 
is quite expensive to fix the defects in later integration and testing 
stages. A study shows that review and its variants such as 
walk-through and inspection can discover 50 to 70 percent of de-
fects in software product [Weigers 2002]. Our long-term goal is to 
establish an efficient method that allows the reviewer to find as 
many defects as possible. 

Several methodologies that can be used for the code review 
have been proposed so far. The idea behind these methods is to 
pose a certain criteria on reading the documents. Code review 
without any reading criteria is called Ad-Hoc Review (AHR). A 
method where the reviewers read the code from several different 
viewpoints, such as designers, programmers and testers, is called 

Perspective-Based Reading (PBR) [Shull et al. 2000]. Check-
list-Based Reading (CBR) [Fagan 1976] introduces a checklist 
with which the reviewers check typical mistakes in the code. Us-
age-Based Reading (UBR) [Thelin et al. 2001] is to review the 
code from users’ viewpoint. Defect-Based Reading (DBR) [Porter 
et al. 1995] focuses on detecting specific type of defects. 

To evaluate the performance of these methods, hundreds of em-
pirical studies have been conducted [Ciolkowski et al. 2002]. 
However, there has been no significant conclusion on which re-
view method is the best. Some empirical reports have shown that 
CBR, which is the most used methods in the software industries, is 
not more efficient than AHR. As for UBR, PBR, and DBR, they 
achieved slightly better performance than CBR and AHR [Basili et 
al. 1996; Porter et al. 1995; Porter and Votta 1998; Shull 1998; 
Thelin et al. 2003]. On the other hand, a study by Halling et al. 
[2001] reports an opposite observation that CBR is better than 
PBR. Several case studies have shown that these methods had no 
significant difference [Fusaro et al. 1997; Lanubile and Visaggio 
2000; Miller et al. 1998; Sandahl et al. 1998]. 

The reason why the results vary among the empirical studies is 
that the performance of individual subjects is more dominant than 
the review method itself, since the review is a task involving many 
human factors. Thelin et al. [2004] compared the effectiveness, i.e., 
the defect detection ratio (Defects found / Total), between UBR 
and CBR. Fig. 1 depicts the result, showing that the effectiveness 
of UBR is 1.2 – 1.5 times better than the one of CBR on average. 
However, as seen in the dotted lines in the figure, the individual 
performance in the same review method varies much more than 
the method-wise difference. Unfortunately, the performance vari-
ance in individual reviewers has not been well studied. Thus, we 
consider it essential to investigate the performance of reviewers 
rather than to devise review methods. Hence, the key is how to 
capture the difference among good and bad reviewers. 

To characterize the reviewer's performance in an objective way, 

Fig. 1. Effectiveness of UBR and CBR [Thelin et al. 2003]



this paper proposes to use eye movements of the reviewer. In gen-
eral, the source code is not read as ordinary documents like news-
papers or stories. The reviewer frequently jumps from a line to 
another or compares multiple lines, to simulate the behavior of the 
program. The way of reading the code should vary among differ-
ent reviewers, and the reading actions must appear on the eye 
movements of the reviewers. Therefore, we consider that the eye 
movements can be used as a powerful and objective metric to 
characterize the individual performance in the code review. 

In this paper, we first present an integrated environment to 
measure and record the eye movements during the code review. 
We developed a software application, “Crescent”, built on top of a 
non-contact eye mark tracker EMR-NC. Based on the raw data 
captured by the eye mark tracker, Crescent computes the line 
number of the source code that the reviewer is currently looking at. 
As an eye moves, Crescent records the transition from a line to 
another, as well as the duration time that the gaze stayed at every 
line. Also, Crescent has a feature that can play back the record 
automatically or interactively. 

Using the environment, we then conduct an experiment of code 
review with five graduate students. Through the experiment, we 
have identified a particular pattern, called scan, in the subjects' eye 
movements. The scan pattern characterizes an action that the re-
viewer reads the entire code before investigating the details of 
each line. Quantitative analysis showed that reviewers who did not 
spend enough time for the scan tend to take more time for finding 
defects. Thus, it is expected that the eye movements is promising 
to establish a more human-centered code review method reflecting 
human factors. 

The rest of this paper is structured as follows. Section 2 dis-
cusses related research in eye movement applications, and Section 
3 explains the integrated environment. In Sections 4 and 5, we 
discuss the experiment and analysis. Finally, Section 6 concludes 
the paper with future work. 
 
2 Related Work 
Eye movements have been often used for the purpose of evaluat-
ing human performance, especially in cognitive science. Law et al. 
[2004] analyzed eye movements of expert and novice in laparo-
scopic surgery training environment. This study showed that ex-
perts tend to see affected parts more than the tool in hand, com-
pared with novices. Kasarskis et al. [2001] investigated eye 
movements of pilots in a flight simulator. In this study, novices 
tend to concentrate seeing the altimeter than experts, while the 
experts see the airspeed. 

Also, in the field of software engineering, there are several re-
search works exploiting the eye movements, for the purpose of, for 
instance, monitoring on-line debugging processes [Stein et al. 
2004; Torii et al. 1999], usability evaluation [Bojko and Stephen-
son 2005; Nakamichi et al. 2003], human interface [Jacob 1995; 
Zhai et al. 1999], and program comprehension[Crosby and Ste-
lovsky 1990]. 

However, as far as we know, there is no research using the eye 
movements for analyzing individual performance in the source 
code review. 
 
3 Capturing Eye Movements in Code Review 
3.1 Requirements 
We first discuss what should be required for measuring eye 
movements in the context of code review, according to specific 
characteristic of the review task. The requirements make it clear 
the purpose of the target measurement environment. 
 
 

Requirement R1: Line-wise tracking of eye movements 
A primary construct of a program is a statement and most pro-

grams are written in one-statement-per-line basis. So, it is reason-
able to consider that the reviewer reads the code in units of lines. 
Hence, the measuring environment has to be capable of identifying 
which line of the code the reviewer is currently looking at. Note 
that the information must be stored as logical line numbers, which 
is independent of the font size or the absolute position where the 
code lines are currently displayed.  
 
Requirement R2: Identification of reviewer's focus 

Even if an eye mark comes at a line in the code, it does not nec-
essarily mean that the reviewer is reading the line. That is, the 
measuring environment has to be able to distinguish a gaze from a 
glance. It is reasonable to assume that the reviewer has focused a 
line if the eye mark stayed in the line for a period.  
 
Requirement R3: Record of time-sequenced lines 

The order in which the reviewer reads lines is important infor-
mation to reflect individual characteristics of code review. Also, 
each time the reviewer gazes at a line, it is essential to measure 
how long the line is being focused. The duration of the focus may 
indicate strength of reviewer's attention to the line. Therefore, the 
measurement environment must record the focused lines as time 
sequence data.  
 
Requirement R4: Analysis supports 

Preferably, the measuring environment should provide tool 
supports to facilitate analysis of the recorded data. Especially, 
features to play back and visualize the data significantly contribute 
to efficient analysis. The tools may be useful for subsequent inter-
views or for educational purposes to novice reviewers.  
 
3.2 Integrated Measuring Environment 

Based on the above requirements, we have developed an inte-
grated environment for measuring eye movements in code review. 
The environment consists of hardware components including a 
non-contact eye camera, and a software application Crescent to 
process the tasks specific to code review. In the environment, the 
reviewer reads the code on a PC monitor. 
 
Hardware components 

In order to track the eye movement on each line (see Require-
ment R1), high resolution and precision are required for the eye 
camera. Therefore, we selected a non-contact eye mark tracker 
EMR-NC, manufactured by NAC Image Technology Inc 
(http://www.nacinc.jp/). EMR-NC can sample the eye movements 
within 30Hz. The finest resolution of the tracker is 5.4 pixels on 
the screen, which is equivalent to 0.25 lines of 20 point letters.  

To display the source code, we used a 21-inches liquid crystal 
display (EIZO FlexScanL771) set at 1024x768 resolutions with a 
dot pitch of 0.3893 millimeter. To minimize the noise data, we 
prepared a fixed and non-adjustable chair for the reviewers.  

The data sampled by EMR-NC is polled to a PC through 
RS-232C interface. On the PC, an application bundled with 
EMR-NC stores the data in a file with the CSV format. Each sam-
ple of the data consists of an absolute coordinates of the eye mark 
on the screen, and sampled date. The bundled application also can 
compute fixations, particular coordinates at which the eye mark 
stays for a given moment. The fixations can be useful to identify 
the reviewer's gaze (Requirement R2). Note however that the raw 
sampled data is not sufficient to satisfy Requirements 1 to 4, since 
it just represents a set of absolute coordinates of the eye move-
ments. We need to refine the raw data into the one feasible to the 



individual analysis of code review. 
 
Crescent: A software application manipulating gaze data 

To complete the requirements, we have developed a software 
application Crescent (Code Review Evaluation System by Captur-
ing Eye movemeNT) on top of the hardware components. Crescent 
manipulates the sample data polled from the eye camera, and con-
verts the data to the line-wise information feasible to individual 
analysis of code review. Crescent was developed in the Java lan-
guage with SWT (Standard Widget Tool), comprising about 4000 

lines of code. Fig. 2 shows the system structure and the measure-
ment environment. Using the figure, we explain how Crescent is 
designed to meet Requirements R1 through R4 as follows.  

What most technically difficult is to satisfy Requirement R1. 
We need to convert the absolute coordinates sampled in pixels by 
the eye tracker, into logical line information. When Crescent is 
launched, the output module pops up a main textbox displaying a 
source code to be reviewed (see Fig. 3). It then opens the raw data 
file and the fixation data file to get the eye movement information. 
Based on the absolute position of the textbox and the absolute 
coordinates of eye mark, the converter module computes the rela-
tive coordinates of the eye mark in the textbox. Next, taking the 
font size, the line pitch and the screen resolution into account, the 
module converts each relative coordinate into a line number in the 
textbox which the coordinate corresponds to. Note that the re-
viewer may scroll down (or up) the source code using a slider bar 
besides the textbox, which changes the correspondence between 
the logical line number and the absolute position. For this, the 
scrolling capture module monitors all events of the slider bar, and 
adapts the correspondence to maintain the consistency of the line 
number.  

To satisfy Requirement R2, we extensively use fixations ob-
tained by the bundled application of EMR-NC. For given fixation 
criteria (i.e., pixels in diameter and staying time of eye mark), the 
application extracts the absolute coordinates of the fixations from 

Display

RS-232C 
Module 

Scrolling 
Capture 
Module 

Crescent 

Output 
Module 

Document 

Review 

Scroll 

Eye 
Tracking 

Reset 
Signal 

Eye Movement 
Information (Pixel) 

Eye Movement 
Information (Line) 

EMR-NC 

Reviewer 

Review 
Information 

Fig. 2. Measurement environment of Crescent 

Converter 

Result 
Viewer 

Fixation 
Analyzer 

Fixation Time
Fixation Count

Fig. 3. Textbox for code review 

Fig. 4. Result viewer 



the raw data sampled. The absolute coordinates are converted into 
the logical line number as explained above, which identifies a set 
of lines the reviewer focused on. 

The fixation analyzer module summarizes the focused lines as a 
time-sequenced data, by investigates the fixations and the date 
information of each eye mark. Also, for each line the fixation ana-
lyzer measures the total time that the reviewer has focused, and the 
number of focuses, which completes Requirement R3. 

Finally, to cope with Requirement R4, Crescent is equipped 
with a result viewer, which can play back and visualize the re-
corded line information. Fig. 4 shows a snapshot of the result 
viewer. The viewer displays the source code reviewed and a hori-
zontal bar chart showing the line-wise eye movements of the re-
viewer. The sequence of the movements can be played back by 
highlighting the focused line on the source code. It is possible to 
play back the record from any time lines of the measurements. 

Crescent also has a feature to send a reset signal to the eye mark 
tracker, which is implemented by the RS-232C module. This is to 
synchronize the starting (or the completion) time of the code re-
view process, with the beginning (or the ending) of the eye mark 
measurement. The synchronization minimizes the margin of error 
between date of eye mark and date of scrolling event. 
 
4  Experimental Evaluation of Individual Perform-

ance of Code Review Using Eye Movements 
4.1 Experiment 
Using the constructed environment, we performed an observation 
experiment of code review process.  
 
Preliminaries 

Five graduate students participated in the experiment as the re-
viewers. They have 3 or 4 years experience of programming, and 
have experienced code review before at least once. 

We have prepared 6 small-scale programs written in the C lan-
guage, each of which is comprised of 12 to 23 lines of source code. 
To measure the individual performance purely with the eye 
movement, we omitted any comments from the source code. We 
also prepared a specification for each program. The specification 
is compact and easy enough for the reviewer to understand and 
memorize. Then, in the source code of each program we intention-
ally injected a single defect. Every defect is logical defect, that is, 
no of syntax error is injected. We explain to reviewers each source 

code has only one logical defect.  
Table 1 summarizes a list of the programs, the specifications 

and the defect injected. In this experiment, we determined the 
fixation criteria as the area of 30 pixels in diameter where the eye 
mark stays more than 50ms.  
 
Task of Code Review 

We instructed individual subjects to conduct code review of the 
six programs, using the developed measuring environment. We use 
Latin square to assign order of presentation for minimize learn-
ing/fatigue effects. For each program, the source code and the 
specification of the program were given to the subject. We allowed 
the subjects to ask questions on the specifications and the C lan-
guage (except about the injected defects), before and during the 
review. The review method was the ad-hoc review, that is, neither 
a checklist nor a perspective was given.  

A task for each subject to review a single source code consists 
of the following steps. 

1. Calibrate the eye tracker so that the eye movements of the sub-
ject are logged correctly. 

2. Explain the specification of the program to the subject verbally.  
3. Synchronizing the subject to start the code review to find defect, 

start the capture of eye movements and code scrolling. 
4. Suspend the review task when the subject tells he/she found the 

defect. Then, ask the subject to explain the defect verbally.  
5. Finish the code review task if the detected defect is correct. Oth-

erwise, resume the task going back to the step 3. The review task 
is continued until the subject successfully finds the defect, or the 
total time for the review exceeds 5 minutes. 

 
Validation of Captured Data 

After the experiment, we checked the validity of sampled coor-
dinates. The coordinates where the subject was blinking or seeing 
outside the textbox were discarded. If data for a task contained 
invalid coordinates more than 30 percent of whole samples, we 
discarded the data from the analysis. Out of total 30 review tasks 
(i.e., 6 programs x 5 subjects), three trials were discarded.  

 
4.2 Analyzing Result 

The eye movements during the code review were visualized and 
played back by the result viewer. For instance, Fig. 5 (a) depicts 
the eye movements captured when subject E reviewed the source 

 
Table 1 Programs reviewed in the experiment 

Program name Lines of 
code 

Program specification Defect injected in the source code 

Sum-5 12 The user inputs five integers. The program outputs 
the sum of these integers. 

A variable accumulating the sum is not initial-
ized. 

Accumulate 20 The user inputs a non-negative integer n. The pro-
gram outputs the sum of all integers from 1 to n. 

A loop condition is mistaken. The condition 
must be (i <= n) but it is (i < n). 

Average-5 16 The user inputs five integers. The program outputs 
the average of these. 

An explicit type conversion from integer to 
double is forgotten, yielding a round margin in 
the average. 

Average-any 22 The user inputs an arbitrary number of integers (up 
to 255) until zero is given. The program outputs the 
average of the given numbers. 

The number of loops is wrong. The program 
always calculates the average of 255 numbers 
regardless of the number of integers actually 
entered. 

Swap 23 The user inputs two numbers. The program swaps 
these numbers by using a function “swap()”. Then 
the program outputs the result. 

The pointers are misused. As a result, the two 
numbers are not swapped.  

Prime 18 The user inputs an integer n. The program checks 
whether n is a prime number or not. 

Logic in a conditional expression is wrongly 
reversed, yielding an opposite verdict. 

 



code of Prime. Using the result viewer extensively, we analyzed 
the eye movements of the individual subjects. As a result, a par-
ticular pattern of the eye movements was identified. 

 
Scan Pattern 

It was observed that the subjects were likely to first read the 
whole lines of the code from the top to the bottom briefly, and then 
to concentrate some particular portions. The statistics show that 
72.8 percent of the code lines were watched in the first 30 percent 

of the review time. We call scan to represent this preliminary 
reading of the entire code. 

Fig. 5 describes eye movements of two subjects where the scan 
patterns are well observed. The graphs depict the time sequence of 
code lines focused. As seen in Fig. 5 (a), Subject E scans the code 
twice, then concentrates the while loop block located middle of 
code. In Fig. 5 (b), it is seen that Subject C firstly locates the 
headers of two function declarations in lines 1 and 13. Then, the 
subject scan the two functions makeSum() and main() in this order. 

00 OUT OF CODE 
01 int makeSum(int max){ 
02  int i, sum; 
03  sum = 0; 
04  
05  i = 0; 
06  while(i < max){ 
07   sum = sum + i; 
08   i = i + 1; 
09  } 
10  return sum; 
11 } 
12 
13 void main(void) 
14 { 
15  int input, sum; 
16  
17  scanf("%d",&input); 
18  sum = makeSum(input); 
19  printf("Sum from 1 to %d is %d.¥n", sum); 
20 }  

1 31 61 91 121 151
Fixation num. 

b) Subject C reviewing Accumulate 

01 void main(void){ 
02  int i, num, isPrime = 0; 
03   
04  printf("Input Number:"); 
05  scanf("%d", &num); 
06   
07  i = 2; 
08  while(i < num){ 
09    if(num%i == 0) 
10      isPrime = 1; 
11    i = i + 1; 
12  } 
13   
14  if(isPrime == 1) 
15    printf("%d is prime number.¥n", num); 
16  else 
17    printf("%d is NOT prime number.¥n", num); 
18 } 

a) Subject E reviewing Prime 

Fig. 5. Eye movements involving scan pattern 

Fixation num. 
1 31 61 91 121 151 181

1st scan 
2nd scan 

Header 
scan

Function 
scan 



After the scan, he concentrates on the review of makeSum().  
 
Characterizing Review Performance by Scan Pattern 

It is reasonable to consider that the scan pattern reflects a cogni-
tive action in code review; a reviewer firstly tries to understand the 
whole program structure. During the scan, a reviewer should iden-
tify some suspected portions where the defect is likely to be con-
tained. Therefore, we consider that the quality of the scan should 
significantly influence the individual efficiency of the defect de-
tection in the review. 

For each review in the experiment, we measured first scan time 
and defect detection time. The first scan time is defined as the time 
spent from the beginning of the review until 80 percent of the total 
lines (except blank lines) are read. On the other hand, the defect 
detection time is the time taken for a reviewer to detect the in-
jected defect. Assuming that the first scan time reflects the quality 
of the scan, we analyze the correlation among the first scan time 
and the defect detection time.  

Fig. 6 depicts a scattered plot, representing the results of indi-
vidual review with respect to the first scan time and the defect 
detection time. In the figure, the horizontal axis represents the first 
scan time, whereas the vertical axis represents the defect detection 
time. Each axis is normalized by the average. The figure shows a 
tendency that the first scan time less than the average yields the 
longer defect detection time. Specifically, the defect detection time 
increased up to 2.5 times of average detection time when the first 
scan time is less than 0.8. On the other hand, in the case that the 
scanning time is more than 0.8, the defect detection time is less 
than the average.  

The experiment showed that the longer a reviewer scanned the 
code, the more efficiently the reviewer could find the defect in the 
code review. This observation can be interpreted as follows. A 
reviewer, who carefully scans the entire structure of the code, is 
able to identify many candidates of code lines containing defects 

during the scan. On the other hand, a reviewer with insufficient 
scan is likely to miss some critical code lines and stick to irrele-
vant lines involving no defect, which decreases the performance of 
the code review. 

 
5 Discussion 
We here discuss other interesting findings, although their correla-
tion with the review performance is not yet proven quantitatively.  
 
5.1 Eye Movements and Reviewer’s Thought 
After the experiment, we conducted two kinds of interviews to 
investigate what the eye movements actually reflect.  

In the first interview, for each subject we showed the source 
code and asked what the subject had been thinking in the code 
review. Most subjects commented general (or abstract) review 
policies, including the strategy of understanding the code and the 
flow of the review. Typical comments are summarized in the first 
column of Table 2.  

In the second interview, we showed the eye movements with the 
result viewer as well as the source code, and asked the same ques-
tions. As a result, we were able to gather more detailed and 
code-specific comments. As shown in the second column of Table 
2, each subject told reasons why he checked some particular lines 
carefully and why not for other lines. It seems that the record of 
the eye movements reminded the subjects of their thought well. 

This fact indicates that the eye movements involve much infor-
mation reflecting the reviewer’s thought during the code review. 
Therefore, captured data of expert reviewers might be used for 
educational/training purposes. 
 
5.2 Other Reading Patterns 
In the experiment, we have found several interesting reading pat-
terns other than the scan pattern. Due to the limited pages, we here 
present typical two patterns among them. 
 
Retrace Declaration Pattern 

When a reviewer reaches a code line where a variable is firstly 
used, within a short period the reviewer often looks back to the 
declaration line of the variable. We define this eye movement as 
retrace declaration pattern. Fig. 7 shows the eye movements in-
volving the pattern. It can be observed that when the subject 
reaches the line 4 involving the first reference of variable i, he 
looks back the line 2 twice, where i is declared. The same patterns 
can be seen for variable input at line 6, and sum at line 7. Statistics 
show that the number of variables causing the retrace declaration 
pattern is 51.8 percent of the total number of variables. The retrace 
declaration pattern can be interpreted as a cognitive action that the 
reviewer reconfirms the data type of the variable.  

 
Retrace Reference Pattern 

This pattern is similar to the retrace declaration. When a re-
viewer reaches a code line where a variable is used, within a short 

 
Table 2 Comments gathered in interviews 

First interview (with source code only) Second interview (with source code and eye movements) 
• I reviewed the main function first, and then read another.
• I felt something is wrong in the second while loop. 
• I simulated the program execution in mind assuming an 

input value. 
• I checked the while loop for a number of times. 

• I did not check the conditional expression of loop. 
• I watched this variable declaration to see the initial value 

of the variable. 
• I did not mind to this output process. 
• I thought this input process was correct because it is 

written in a typical way. 
• I could not understand the variable initialized like this. 

Fig. 6. Correlation between first scan and defect detection 

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

First scan tim e

D
ef

ec
t d

et
ec

tio
n 

tim
e



period the reviewer often looks back to the lines where the vari-
able has been recently referred. This pattern is defined as retrace 
reference pattern. Fig. 8 presents the eye movements containing 
this pattern. In the figure, when the subject reaches line 15 involv-
ing a variable ave, he looks back line 14 first where ave is recently 
referred. Then, since line 14 contains two variables sum and i, a 
further retrace pattern occurs back to the while block, reading the 
lines containing sum and i. The pattern can be interpreted as a 
cognitive action that the reviewer remember and recalculate the 
value of the variable. 

It is reasonable to consider that the above reading patterns intui-
tively reflect cognitive aspects of a reviewer, and thus the patterns 
should affect the individual performance of code review. However, 
the experiment conducted in this paper did not show any signifi-
cant correlation with the performance. Also in the subsequent in-
terviews, we were not able to gather any specific comments from 
the subjects unfortunately. To clarify these patterns, we need more 
experiments with larger programs and more subjects. Further in-
vestigation of the other reading patterns is left as our future work. 
 
6 Conclusion 
In this paper, we have proposed to use the eye movements to ana-
lyze individual performance of source code review. We first de-

veloped an integrated measuring environment of eye movements 
in code review, including a software application Crescent. Then, 
using the environment, we conducted an experiment to character-
ize the review performance with eye movements. In the experi-
ment, we found a particular reading pattern, called scan. Through 
the statistic analysis, it was shown that the reviewers taking suffi-
cient time for scanning the code tend to detect defects efficiently.  

Some topics for future research present themselves. We are 
planning to conduct experiments with more practical settings. 
Through more experiment we examine more reading patterns and 
their impacts to the individual review performance. It is also an 
interesting challenge to apply Crescent to peer review of other 
documents like requirements and specifications.  

 
References 
BASILI, V. R., GREEN, S., LAITENBERGER, O., LANUBILE, 

F., SHULL, F., SØRUMGÄRD, S., and ZELKOWITZ, M. 
V. 1996. The Empirical Investigation of Perspective-Based 
Reading, Empirical Software Engineering: An International 
Journal, 1, 2, 133-163. 

 
BOEHM, B. W. 1981. Software Engineering Economics. Prentice 

Fig. 7. Eye movements involving retrace declaration pattern (Subject A reviewing Sum-5) 

01 void main(void){ 
02  int i, input, sum; 
03 
04  i = 0; 
05  while(i < 5){ 
06   scanf("%d", &input); 
07   sum = sum + input; 
08   i = i + 1; 
09  } 
10 
11  printf("Sum:%d¥n", sum); 
12 } 

1 31 61 91
Fixation num. 

Retrace of 
declarations 

01 void main(void){ 
02    int i, input, sum; 
03    double ave; 
04     
05    sum = 0; 
06     
07    i = 0; 
08    while(i < 5){ 
09        scanf("%d", &input); 
10        sum = sum + input; 
11        i = i + 1; 
12    } 
13     
14    ave = sum / i; 
15    printf("Average:%f¥n", ave); 
16 } 

Fig. 8. Eye movements involving retrace reference pattern (Subject C reviewing Average-5) 

Fixation num. 
1 31 61 91



Hall. 
 
BOJKO, A., and STEPHENSON, A. 2005. Supplementing Con-

ventional Usability Measures with Eye Movement Data in 
Evaluating Visual Search Performance. In Proceedings of the 
11th International Conference on Human-Computer Interac-
tion (HCII 2005). 

 
CIOLKOWSKI, M., LAITENBERGER, O., ROMBACH, D., 

SHULL, F., and PERRY, D. 2002. Software Inspection, Re-
views & Walkthroughs. In Proceedings of the International 
Conference on Software Engineering (ICSE), 641-642. 

 
CROSBY, M., E., and STELOVSKY, J. 1990. How Do We Read 

Algorithms? A Case Study. IEEE Computer, 23, 1, 24-35. 
 
FAGAN, M. E. 1976. Design and Code Inspections to Reduce 

Errors in Program Development. IBM Systems Journal, 15, 3, 
182-211. 

 
FUSARO, P., LANUBILE, F., and VISAGGIO, G. 1997. A Rep-

licated Experiment to Assess Requirements Inspection Tech-
niques. Empirical Software Engineering: An International 
Journal, 2, 1, 39-57. 

 
HALLING, M., BIFFL, S., GRECHENIG, T., and KOHLE, M. 

2001. Using Reading Techniques to Focus Inspection Per-
formance. In Proceedings of 27th Euromicro Workshop Soft-
ware Process and Product Improvement, 248-257. 

 
JACOB, R. J. K. 1995. Eye Tracking in Advanced Interface De-

sign. Virtual environments and advanced interface design, 
Oxford University Press, 258-288. 

 
KASARSKIS, P., STEHWIEN, J., HICHOX, J., ARETZ, A., and 

WICKENS C. 2001. Comparison of Expert and Novice Scan 
Behaviors during VFR Flight. In Proceedings of the 11th In-
ternational Symposium on Aviation Psychology, 
http://www.aviation.uiuc.edu/UnitsHFD/conference/proced0
1.pdf 

 
LANUBILE, F., and VISAGGIO, G. 2000. Evaluating Defect 

Detection Techniques for Software Requirements Inspec-
tions. ISERN Technical Report, 00, 08. 

 
LAW, B., ATKINS, M. S., KIRKPATRICK, A. E., LOMAX, A. 

J., and MACKENZIE, C. L. 2004. Eye Gaze Patterns Dif-
ferentiate Novice and Expert in a Virtual Laparoscopic Sur-
gery Training Environment. In Proceedings of ACM Sympo-
sium of Eye Tracking Research and Applications (ETRA), 
41-48. 

 
MILLER, J., WOOD, M., ROPER, M., and BROOKS, A. 1998. 

Further Experiences with Scenarios and Checklists. Empiri-
cal Software Engineering: An International Journal, 3, 3, 
37-64. 

 
NAKAMICHI, N., SAKAI, M., HU, J., SHIMA, K., 

NAKAMURA, M., and MATSUMOTO, K. 2003. Web-
Tracer: Evaluating web usability with browsing history and 
eye movement. In Proceedings of 10th International Con-
ference on Human-Computer Interaction (HCI International 

2003), 813-817. 
 
PORTER, A., and VOTTA, L. 1998. Comparing Detection 

Methods for Software Requirements Inspection: A Replica-
tion Using Professional Subjects. Empirical Software Engi-
neering: An International Journal, 3, 4, 355-380. 

 
PORTER, A. A., VOTTA. L. G., and BASILI, V. R. 1995. 

Comparing Detection Methods for Software Requirements 
Inspection - A Replicated Experiment. IEEE Transaction on 
Software Engineering, 21, 6, 563-575. 

 
SANDAHL, K., BLOMKVIST, O., KARLSONN, J., 

KRYSANDER, C., LINDVALL, M., and OHLSSON, N. 
1998. An Extended Replication of an Experiment for As-
sessing Methods for Software Requirements Inspections. 
Empirical Software Engineering: An International Journal, 3, 
4, 281-406. 

 
SHULL, F. J. 1998. Developing Techniques for Using Software 

Documents: A Series of Empirical Studies. PhD thesis, Univ. 
of Maryland. 

 
SHULL, F., RUS, I., and BASILI, V. 2000. How Perspec-

tive-Based Reading Can Improve Requirements Inspections. 
IEEE Computer, 33, 7, 73-79. 

 
STEIN, R., and BRENNAN, S. E. 2004. Another Person's Eye 

Gaze as a Cue in Solving Programming Problems. In Pro-
ceedings of the 6th International Conference on Multimodal 
Interface, 9-15. 

 
THELIN, T., ANDERSSON, C., RUNESON, P. and 

DZAMASHVILI-FOGELSTRÖM, N. 2004. A Replicated 
Experiment of Usage-Based and Checklist-Based Reading. 
In Proceedings of 10th IEEE International Symposium on 
Software Metrics (METRICS’04), 246-256. 

 
THELIN, T., RUNESON, P., and REGNELL, B. 2001. Us-

age-Based reading - An Experiment to Guide Reviewers with 
Use Cases. Information and Software Technology, 43, 15, 
925-938. 

 
THELIN, T., RUNESON, P., and WOHLIN, C. 2003. An Ex-

perimental Comparison of Usage–Based and Check-
list-Based Reading. IEEE Transaction on Software Engi-
neering, 29, 8, 687-704. 

 
TORII, K., MATSUMOTO, K., NAKAKOJI, K. TAKADA, Y., 

TAKADA, S., and SHIMA, K. 1999. Ginger2: An Envi-
ronment for Computer-Aided Empirical Software Engineer-
ing. IEEE Transactions on Software Engineering, 25, 4, 
474-492. 

 
WEIGERS, K. 2002. Peer Reviews in Software – A Practical 

Guide. Addison-Wesley (in Japanese). 
 
ZHAI, S., MORIMOTO, C., and IHDE, S. 1999. Manual and 

Gaze Input Cascaded (MAGIC) Pointing. In Proceedings of 
the SIGCHI conference on Human factors in computing sys-
tems, 246-253. 


