
Are Good Code Reviewers Also Good at Design Review?

Hidetake Uwano, Akito Monden, Ken-ichi Matsumoto
Graduate School of Information Science, Nara Institute of Science and Technology

8916-5 Takayama Ikoma, Japan
{hideta-u, akito-m, matumoto}@is.naist.jp

ABSTRACT
Software review is a necessity activity to build high reliabil-
ity software in software development. In this paper, we ex-
perimentally analyze the difference in performance between
two types of (checklist based) software reviews: design re-
view and code review. If good code reviewers were also good
at design review, then we should assign good code reviewers
to the design review too. If not, that means these two re-
views require different types of expertise. In our experiment,
with ten review participants, we examined two hypotheses
each related to the defect detection ratio and the required
time to find a defect. As a result, we found that there was
no correlation between two reviews, i.e. good code review-
ers were not necessarily the good design reviewers. This
suggests the need of a completely different training program
for each review.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Code inspections and walk-throughs; H.1.2 [Models and
Principles]: User/Machine Systems—Human factors

General Terms
Human Factors

Keywords
Code review, design review, experimental evaluation

1. INTRODUCTION
Improving quality of software documents by reading them

is essential to reduce development cost. Software review in-
cluding software inspection and other reading techniques can
be performed in early phases of software development with-
out implemented system, therefore, rework costs can be re-
duced [2]. Especially in large scale projects, defect detection
and defect correction consume huge resources, defect detec-
tion by review in early phases (e.g. requirements definition

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM’08, October 9–10, 2008, Kaiserslautern, Germany..
Copyright 2008 ACM 978-1-59593-971-5/08/10 ...$5.00.

and/or architectural design) of the development is necessary.
Many of studies about review have been conducted such as
proposals of systematic reading techniques and experimental
comparison of reading techniques [1, 4, 5].

In this paper, we experimentally analyze the difference in
performance between two types of (checklist based) software
reviews: design review and code review. If good code review-
ers were also good at design review, then we should assign
good code reviewers to the design review too. If not, that
means these two reviews require different types of exper-
tise, and we need a completely different training program
for each review. So far, there are no past researches that
compared the difference in individual performance between
design review and code review.

We examined two hypotheses each related to the defect
detection ratio and the required time to find a defect. In
the experiment, ten participants reviewed a design docu-
ment (containing defects) using its requirements specifica-
tion (containing no defect), then they were asked to review
source code (containing defects) using its requirements spec-
ification and the revised design document (containing no de-
fect). During the experiment, performance measures (defect
detection ratio and review time per defect) were recorded.

2. EXPERIMENTAL EVALUATION

2.1 Hypotheses
In this paper, we examine the following two hypotheses

about review performance between design and code review.
These hypotheses indicate “good code reviewers” are “good
design reviewers.”

• Hratio: Reviewers who detect more defects in design
review detect more defects in code review, and, review-
ers who detect less defects in design review detect less
defects in code review.

• Hefficiency: Reviewers who require less time to detect
a defect in design review require less time to detect a
defect in code review, and, reviewers who require more
time to detect a defect in design review require more
time to detect a defect in code review.

2.2 Outline of Experiment
Subjects were asked to find defects from a target doc-

ument in design review and code review. First, subjects
performed design review with four documents (requirements
specification, design document, data file, and a checklist for

design review) to detect defects injected in the design doc-
ument beforehand. Then, the subjects performed code re-
view with five documents (requirements specification, design
document, C source code, data file, and a checklist for code
review) to find injected defects in the source code. Reviews
were finished when a subject (reviewer) concluded the target
document had no more defects.

In both review, time spent for a review and the number
of detected defects were collected for the analysis. Subjects
were nine graduate students and one faculty member of Nara
Institute of Science and Technology. An average of their
programming experience was 7.6 years, and 2.4 years for
programming with C language. Two of them had experience
of software development in industry.

2.3 Materials
Documents used in the experiment were about a rental

house search system actually used in an industrial training
workshop. The documents consist of requirements specifi-
cation, design document, source code and data file. This
system reads a data file in which a set of rental houses are
listed. A system user inputs a condition about rental houses
(e.g. distance from a nearest train station, floor space and
rent) that he/she wants to look at. According to the user
input, the system outputs a list of rental houses that match
the condition.

• Requirements Specification: This document con-
sists of 40 lines of Japanese text, describing system
functions and requirements.

• Design Document: This document describes details
of each function’s interface, data and processes. It con-
sists of 30 lines of Japanese text.

• Source Code: This is 5 functions, 120 steps C lan-
guage program. All comments were removed in ad-
vance.

• Data File: This file is read by the system when the
system starts. The file consists of a list of rental houses.

• Checklist: We prepared two generic checklists, one
for C source code review and the other for design doc-
ument review. Both checklists were written based on
existing literatures [3, 6].

2.4 Defects
We injected nine defects in total (three defects for each

of three defect types) into the design document in advance.
Defect types are described as follows.

• Inconsistency with requirements: This defect type
means that the design document contains a function
described in the requirements specification but it does
not fulfills the requirements.

• Omission of requirements: This means, the de-
sign document has no description about a function de-
scribed in the requirements specification.

• Excess design: This defect type indicates there exist
excess descriptions in the design document, which has
not described in the requirements specification. This
defect can be also considered as insufficient description
of the requirements specification.

Figure 1: Defect detection ratio in code and design
review.

We injected three types, eight defects in the source code.
In addition, this source code had four excess functions that
were not described in the requirements specification. We
consider these excess implementation as defects. As a result,
the source code contained twelve defects in total. Defect
types are described as follows.

• Data: This defect type includes incorrect definition
and usage of variables.

• Process: This defect type means incorrect functional
logic (such as incorrect conditional statements.)

• Incorrect message: Incorrect message output to dis-
play, which causes user confusion and/or mistakes.

• Excess implementation: This type of defect indi-
cates excess implementation in source code, which has
not described in the requirements specification and the
design document. This defect can be also considered
as insufficient description of the requirements specifi-
cation and the design document.

3. RESULT
The average review time was 58.9 minutes (24.9 minutes

for design review, and 34.0 minutes for code review.) Figure
1 shows defect detection ratio (the percentage of detected de-
fects of each subject) in design review and code review. The
average defect detection ratio in design review was 62.2%,
and 58.3% in code review.

Figure 2 and Figure 3 show correlation between design re-
view performance and code review performance in terms of
defect detection ratio and detection time per defect respec-
tively. Similarly, Table 1 describes their correlation coeffi-
cients and p-values. Obviously, the correlation coefficient of
defect detection ratio between two reviews had no statisti-
cal significance (r = 0.052, p = 0.887.) Also, the correlation
coefficient of detection time per defect had no significance
(r = 0.201, p = 0.577.)

From further analysis, it turned out that one subject who
had industry experience achieved the best defect detection
ratio in design review. This person also found defects more
than the average in code review. However, the other subject
who also had industry experience found defects less than
the average in both design and code review. Moreover, as

Table 1: Correlation between code and design review.
Detection ratio (code) Review time / defect (code)

Detection ratio (design)
Pearsons’ r 0.052 0.422
p-value 0.887 0.225

Review time / defect (design)
Pearsons’ r 0.299 0.201
p-value 0.402 0.577

Figure 2: Correlation between defect detection ratio
in code and design review.

for remaining eight subjects, those who found defects more
than the average in design review found defects less than
the average in code review and vice versa (seven of eight
subjects).

We also conducted an analysis focusing on each defect
type; however, there was no significant correlation in review
performance between two reviews (Due to limited space, we
do not describe its detail in this paper).

Obviously, these results rejected the hypothesis Hratio

(Reviewers who detect more defects in design review detect
more defects in code review) as well as Hefficiency (Review-
ers who require less time to detect a defect in design review
also require less time to detect a defect in code review.)

4. CONCLUSION
This paper experimentally analyzed the difference in per-

formance between design and code review. As a result, we
found that there was no correlation between these two re-
views, i.e. good code reviewers were not necessarily the good
design reviewers. This indicates we should not simply assign
good code reviewers to design review (good design review-
ers to code review as well). We believe there is a need of a
completely different training program for each review.

The major limitation of our experiment is that the sample
size was small (ten subjects). Also, we used just one software
system to be reviewed. In the future, we are to increase the
sample size with different software systems.

5. ACKNOWLEDGMENTS
This work was conducted as a part of the StagE Project,

the Development of Next Generation IT Infrastructure, sup-
ported by Ministry of Education, Culture, Sports, Science

Figure 3: Correlation between spent time to detect
a defect in code and design review.

and Technology.

6. REFERENCES
[1] M. E. Fagan. Design and code inspection to reduce

errors in program development. IBM Systems Journal,
15(3):182–211, 1976.

[2] O. Laitenberger, T. Beil, and T. Schwinn. An
industrial case study to examine a non-traditional
inspection implementation for requirements
specifications. In Proceedings of Eighth IEEE
Symposium on Software Metrics, pages 97–106, 2002.

[3] A. A. Porter, L. G. Votta, and V. R. Basili.
Comparing detection methods for software
requirements inspection - a replicated experiment.
IEEE Transaction on Software Engineering,
21(6):563–575, 1995.

[4] G. Sabaliauskaite, F. Matsukawa, S. Kusumoto, and
K. Inoue. An experimental comparison of
checklist-based reading and perspective-based reading
for UML design document inspection. In Proceedings
of the 2002 International Symposium on Empirical
Software Engineering, page 148, Washington, DC,
USA, 2002.

[5] F. Shull, I. Rus, and V. Basili. How perspective-based
reading can improve requirements inspections. IEEE
Computer, 33(7):73–79, 2000.

[6] T. Thelin, P. Runeson, and C. Wohlin. An
experimental comparison of usage-based and
checklist-based reading. IEEE Transaction on
Software Engineering, 29(8):687–704, 2003.

