DRESREM 2: An Analysis System for Multi-Document Software
Review using Reviewers’ Eye Movements

Hidetake Uwano, Akito Monden, Ken-ichi Matsumoto
Graduate School of Information Science, Nara Institute of Science and Technology, Japan
{hideta-u, akito-m, matumoto}@is.naist.jp

Abstract

To build high-reliability software in software develop-
ment, software review is essential. Typically, software
review requires documents from multiple phases such as
requirements specification, design document and source
code to reveal the inconsistencies among them and to
ensure the traceability of deliverables. However, most
previous studies on software review (reading) tech-
niques focus on finding defects in a single document
in their experiments. In this paper, we propose a
multi-document review evaluation system, DRESREM
2. This system records reviewers’ eye movements and
mouse/keyboard operations for analysis. We conducted
eye gaze analysis of reviewers in design document re-
view with multiple documents (including requirements
specification, design document, etc.) to confirm the
usefulness of the system. For the performance analy-
sis, we recorded defect detection ratio, detection time
per defect, and fization ratio of eye movements on
each document. As a result, reviewers who concen-
trated their eye movements on requirements specifica-
tion found more defects in the design document. We
believe this result is good evidence to encourage devel-
opers to read high-level documents when reviewing low-
level documents.

1. Introduction

Software review! is a technique to improve the qual-
ity of software documents and detect defects (i.e. bugs
or faults) by reading the documents [2]. In software
review, a developer reads requirements specification,
design document, source code and other documents to
understand systems’ functions and structures, then de-
tects defects from the documents. Defect detection by

Tn this paper, we use the word ”review” to indicate soft-
ware review, inspection, walkthrough and/or other reading tech-
niques.

review can be performed in the early phases of software
development without implementing the system, there-
fore, future rework costs can be reduced [5]. Especially
in large scale projects, because defect detection and
correction consume huge resources, defect detection by
review is necessary.

Many of studies about review have been conducted,
such as proposal of systematic reading techniques, ex-
perimental comparison of reading techniques, and anal-
ysis of reviewers’ behavior [1, 3, 4, 5, 6, 7]. According to
these experiments, PBR (Perspective-Based Reading)
is relatively more effective than CBR (Checklist-Based
Reading) and AHR (Ad-Hoc Reading), which are com-
monly used techniques in the industry [6]. Most of
these studies assume only a single document is used
in the review. In these studies, subjects read a tar-
get document (requirements specification, design doc-
ument, source code or others) with a specific review
technique, and find defects from the document.

However, software review in the industry uses not
only the target document but also other relevant doc-
uments [10]. For example, in source code review, re-
viewers read source code as well as the requirements
specification and design document to understand sys-
tem structures, functions, and data structures. Also,
reviewers compare source code (target document) with
the requirement/design document (related document)
to find inconsistencies between design and implementa-
tion. Moreover, comparison of documents is performed
to confirm the traceability among different phases of
documents. In such multi-document review, time spent,
to read each document and reading procedure should
affect the defect detection performance. Hence, we
believe empirical and quantitative analysis of review
behavior in multi-document review is required for de-
velopment of effective review techniques and/or guide-
lines.

In this paper, we propose a multi-document review
evaluation system, DRESREM 2. This system is an
enhancement of our previous system DRESREM [9],

which was used to record reviewers’ program reading
procedure (single document review). Our enhanced
system DRESREM 2 has the following four character-
istics to enable us to analyze multi-document review
processes using reviewers’ eye movements: 1) Detection
of reviewers’ document switching (among requirements
specification, design document, source code, checklist,
etc.), 2) Line-wise eye movement recording, 3) A fea-
ture enabling reviewers to take notes about detected
defects during software review and 4) Data analysis
support (visualizing and replaying eye movements and
document switching.) These characteristics facilitate
observation of multiple document review and analysis
of eye movements.

In the following Sections, we explain the architecture
of the system and its characteristics. Then we describe
an experiment of design document review to evaluate
the system’s usefulness.

2. Multi-document Review

Industry developers usually review the target doc-
ument (e.g. source code) with its high-level docu-
ments (requirements specification, design document) or
other related documents (test specification, user man-
ual) [10]. Figure 1 describes the relationship between
source code and other documents at source code re-
view. Source code has several blocks of functions,
methods, classes, etc. In single-document review (only
with source code), a reviewer reads all the blocks to un-
derstand the program wholly (e.g. through Function a
to Function d) and tries to find any defect during pro-
gram understanding.

In addition to this, in multi-document review
(source code review with requirement/design doc-
ument), reviewer reads each block of source code
(e.g. Function b) as well as related blocks in the
requirement/design document (e.g. Design A and
Requirement «) to find any inconsistencies among dif-
ferent levels of blocks. This activity is “comparison”
rather than “understanding.”

To analyze such reviewer activity in the multi-
document review, we adopt eye movements of review-
ers. Using the eye movements allows us to observe of
reviewers’ reading patterns and quantitative analysis
of the relationship between the pattern and the review
performance. We implemented a multi-document re-
view evaluation system to record reviewers’ eye move-
ments in the review. To make clear the purpose of the
system, we present four requirements to be satisfied by
the system.

¢ Requirement R1: Detection of document
switching

Requirements Source code
specification Function a
Requirement 0l ie I
4——|—> Function b g
M 1
Requirement 8 —— i
—— Function c i
4 —_— i
Design document !
Design A - Function d :
f— —— I
7
Design B <« — >
— Single document review
—
4 Multi documents review

Figure 1. Source code review with multiple
documents.

To observe multi-document review activities, the
system is required to identify which document is
read by the reviewer. Usually, multiple documents
were displayed in multiple windows or a window
that has a tab to switch documents displayed
in the window, hence documents can be over-
lapped with other documents during review tasks.
This means the current focus of the reviewer can-
not be identified from coordination of eye move-
ments alone. Therefore, the system should have
a functionality to identify which document is cur-
rently focused on by the reviewer by recording tab
switching activities and window focusing activi-
ties.

¢ Requirement R2: Line-wise recording of eye

movements

A primary construct of a document is a line. In
particular, most programs are written on a one-
statement-per-line basis. So, it is reasonable to
consider that the reviewer reads the document
in units of lines. Hence, the measuring environ-
ment has to be capable of identifying which line of
the document the reviewer is currently looking at.
Note that the information must be stored as logi-
cal line numbers, which is independent of the font
size or the absolute position where the document
lines are currently displayed.

¢ Requirement R3: Enable reviewers to take

notes about detected defects

To analyze the relationship between review perfor-
mance and the reading procedure, details of de-
tected defects need to be recorded. Hence, the
system must enable reviewers to take notes about
details of detected defects, e.g. document name,
location (line number) and date.

¢ Requirement R4: Data analysis support
Preferably, the measuring environment should
provide tool support to facilitate an analysis of
the recorded data. In particular, features to play
back and visualize the data will contribute to the
efficient analysis. Such features are also useful for
the purpose of educating novice reviewers.

In Section 3, we explain how the proposed system
satisfies these requirements.

3. DRESREM 2
3.1. Outline

A multi-document review evaluation system, DRES-
REM 2 was developed based on a single-document
review evaluation system, DRESREM [9]. Figure 2
shows the architecture of DRESREM 2. This system
consists of an Eye Tracking Device, Fixation Analyzer
and Review Platform. We used non-contact eye mark
tracker EMR-NC? to record subjects’ eye movements.
Figure 3 shows the eye tracking device used in the sys-
tem. Fixation Analyzer is a software tool to calculate
fixation points from sampled gaze points. Fixation is
a particular coordinate at which the eye mark stays
for a given moment. The fixations can be useful to
distinguish an instance of reading from a glance. Re-
view Platform is a software system to show documents
for the reviewers and record their operations. This
platform was implemented in Java language compris-
ing 5700 steps and 80 classes with SWT (The Standard
Widget Kit)2. The platform shows the documents to
reviewers through Document Viewer. A screenshot
of Document Viewer is shown in Figure 4. Review-
ers select a document that they want to display on the
Document pane using the Document tab located on the
top of the Document viewer.

DRESREM 2 measures how a reviewer reads each
line of a document on the computer display using eye
movements and operation logs (e.g. document switch-
ing and window scrolling.) When a reviewer finds a
defect in a document, the reviewer takes notes about
the defect in the pop up window, which appears when

2http://www.eyemark.jp/
3http://www.eclipse.org/swt/

the reviewer double-clicks a line of the document. The
system records these notes with a document name,
line number and date. In addition, the reviewer can
take notes about anything whenever he/she wants us-
ing Memo pane. The reviewer can also search for any
keyword in a document using the Search pane during
the review.

3.2. System functions and procedures

The procedure of recording reviewers’ eye move-
ments and operations is as follows (Figure 2). Doc-
uments used in the review are displayed in the Doc-
ument Viewer. The Eye Tracking Device outputs the
reviewer’s gaze points, represented as coordinates (x,
y) on a display. These sampled gaze points are con-
verted to fixation points by the Fixation Analyzer.
Window Event Capturer observes user operations
on a Document Viewer and records Window informa-
tion, i.e. window position and window size, and cur-
rent scroll position (line number) of the document cur-
rently focused on. This satisfies Requirement R1. Fix-
ation Point/Line Converter calculates the logical
line number of a document from Window information
and fixation points. This satisfies Requirement R2. Re-
viewer operations such as defect description recording,
keyword searching and taking of notes are recorded by
Operation Recorder, then Review Information
Integrator combines the operations and eye move-
ments to create the time series data of the review his-
tory. This satisfies Requirement R3.

Recorded eye movements and operations are visual-
ized in Result Viewer. Figure 5 shows an example
of visualized eye movements and operations in a source
code review. In this figure, the left side of the window
shows a source code that is read in the review, and
the right side of the window describes eye movement
fixations and operations as a bar chart. Also, the se-
quence of the eye movements can be played back in this
window. These features satisfy Requirement R4.

DRESREM 2 outputs review history (i.e. time se-
ries of eye movements and operations) as three type
formats, document-wise, block-wise and line-wise. In
each format, eye movements were recorded as series of
fixations on documents, blocks or lines. These formats
allow users to easily analyze the review history from
different, granularities.

Document scroll, switch

I - |
Software | P — |
documents | *—r :
I =
I : R N I
P . eview i |
Keyword search, : Document Viewer pitory Result Viewer I
memo, defect | _ |
description recording | | gperation > In:):r\:::on I
| | Recorder | Operation |
) Integrator
| info. y Y |
- | Logical line numbers, |
Reviewer I dates, durations |
i : Window Fixation :
tp| Event » Point/Line |
Window move, resize, | | Capturer | Window info.| Converter |
| |
| |

Eye movement

Review Platform

Fixation points

| Fixation

: v c I
P Ee |

| 7 image Image |

: —» Processor :

|

|

Figure 3. Eye tracking device EMR-NC.

4. Case Study
4.1. Outline

We experimentally evaluated the usefulness of the
proposed system. In the experiment, subjects were
asked to find defects in a design document by reading
all given documents. In the review, four documents —

Sampled gaze points | Analyzer

requirements specification, design document, data file,
and a checklist for design document review — were
used. The original requirements specification and de-
sign document contained no defect. We injected nine
defects to the design document. The review was fin-
ished when a subject (reviewer) concluded that the de-
sign document had no more defects.

Subjects were eleven graduate students and one fac-
ulty member of Nara Institute of Science and Technol-
ogy. Their average programming experience was 7.6
years. Two of them had software development experi-
ence in industry.

4.2. Materials

Documents used in the experiment were about a
rental house search system actually used in an indus-
trial training workshop. The documents consist of re-
quirements specification, design document and data
file. This system reads a data file in which a set of
rental houses is listed. A system user inputs a condi-
tion about rental houses (e.g. distance from the nearest
train station, floor space and rent) that he/she wants
to look at. According to the user input, the system
outputs a list of rental houses that match the condi-
tion.

"I DRESREM 2

ol o Tt i Windo

spectxt dES|gntxt apartment(target)c apartmentdat | checklisttxt ||

'-"-a moa —wbul&mmukmm-b

if (selectNum > 0) {

while(1) {

scanf ("%d”, &selectNum);

switch(zelectNum) {

printf("HEECHSRLET.
printf (EEEETHESRLET.
printf "HKETHERELET.
printf (FETLET. ¥n');

case 0: ¥n'); break;
¥n"); break;

¥n"); break;

case |:
case 2:
case 9:

i

scanf ("%d-%d", & | ower, &upper);

— e — — O — — e — W ——

Document tab

printf ("¥ndriRRSRIEA) REAL1], PEEEGnI[2], ZELS], #7911 ")

zoto Loop_End;
default: printf ("2C0NEHE - TLET. ¥n'); continue;

printf (7 MEZEEHE A [EERUTY LRR-TRY : 50-00] ")

bukken _sea rch(bukkenLlst dat aNum, Select Num, |ower, Lpper) rl; "

BEX]

~ Find

[JGaze Senzitive

Direction
() Backward (%) Forward

Scope
(%) Gurrent Doc
) All Doc

I Search pane)

Memo pane

Figure 4. Screenshot of Document Viewer.

e Requirements Specification: This document
consists of 40 lines of Japanese text, describing
system functions and requirements.

e Design Document: This document describes de-
tails of each function’s interface, data and pro-
cesses. It consists of 30 lines of Japanese text.

e Data File: This file is read by the system when
the system starts. The file consists of a list of
rental houses.

e Checklist: This is a generic checklist for a de-
sign document review, written based on existing
literature [7, 8].

We injected nine defects in total (three defects for
each of three defect types) into the design document in
advance. Defect types are described as follows.

e Inconsistency with requirements: This defect
type means that the design document contains a
function described in the requirements specifica-
tion but it does not fulfills the requirements.

e Omission of requirements: This means, the de-
sign document has no description about a function
described in the requirements specification.

e Excess design: This defect type indicates there
exist excess descriptions in the design document,
which have not been described in the requirements
specification. This defect can be also considered as
insufficient description of the requirements speci-
fication.

4.3. Result

Twelve subjects’ data were collected in the experi-
ment. One of them was removed from the analysis be-
cause of insufficient data accuracy of eye movements.
The average review time was 25 minutes. From the
interview of reviewers conducted after the experiment,
we confirmed that the motivation of subjects to find
defects was kept high during the experiment. All sub-
jects found at least three bugs (the average was 5.45).

Using the replay function of DRESREM 2 exten-
sively, we investigated the eye movements of the indi-
vidual subjects. As a result, we found that every re-
viewer switched documents frequently in their review.
Figure 6 depicts an example of reviewers’ eye move-
ments in the experiment. This graph describes time
series of eye movements on each line of documents, the
horizontal axis shows fixation ID (transitions of fixa-

=

specitxt | designtxt | apartmentttarestic | apartmentdat | checklistixt

||
databum = read_bulkkenfile(buldenlist, argv[1]);
Search Word:
if (selectMum > 03 { loop_end
Caze Sensitive:
while{1) { falze
printf("¥n#@REHA D], EEREGm) (2], &[], #7011 ") Direction:
scanf("8d", hselectMum}; Backward
switch{selectNun){ Oursr'gﬁtpeli:)oc
cage 0 printf ("FERITHERLET. ¥n"): break:
cage 11 printf ("PERETAERLET. ¥n"): break:
caze 21 printfCFETHELES. ') break;
caze 9: printf("SAT LET. ¥n"); zoto Loop_End:
default: printf (" AFFREE-TLET. ¥"); continue;
i
printf (" #iEFEEAN [BEETY LFR-TFER¥" (] : 60-00] :");
scanf (" 8d-8d" . &l ower, kupper);
: buldeen_searchibuldenlist, datablum, selectMum, lower. upper): datanu brotEmE -
Loop_End:;
lelsef
printf ("T' =207 1 JLIZETT. ¥"h “IGontroller - DRESREM 2 - 0E3
3 — SD4996
1 0; q T tartd 00
, return Start § | Stop | 10 1] Lone.367
<l 3] | xes =
Y402 o

Figure 5. Example of eye movement visualization using DRESREM 2.

tion among lines) and the vertical axis shows the line
number of documents. In the figure, eye transitions be-
tween requirements specification and design document
were observed. In the experiment, reviewers switched
documents every 19.9 seconds on average.

From a quantitative analysis, we found that review-
ers spent different fixation time on each documents.
Table 1 shows the percentage of fixation time for each
document. This result indicates that reviewers spent
a fair amount of time on the design document. They
spent most time on the requirements specification and
design document (96.5% on average.) However, there
were quite a few differences in their reviews. For ex-
ample, Subject A spent only 19.8% on the requirements
specification and spent most time on the design docu-
ment (72.9%.) On the other hand, SubjectB concen-
trated more on the requirements specification (40.9%)
and less time on the design document (54.8%.) The re-
sult of a statistical analysis revealed a significant corre-
lation between the defect detection ratio of ” omission of
requirements” and review time on requirements speci-
fication (r = 0.593, p — value = 0.054.) This suggests
that to find the omission of requirements in the design
document, we need to read the requirements specifica-
tion. It can be said that reading the design document

Table 1. Fixation ratio for each document.

Average | Minimum | Maximum
Requirements | 28.5% 19.8% 40.9%
Design 68.0% 54.8% 73.3%
Data file 0.6% 0.0% 1.2%
Checklist 2.2% 0.0% 3.6%
Other 0.7% 0.0% 3.8%

only yields less understanding of the system require-
ments.

5. Conclusion

In this paper, we proposed a multi-document re-
view evaluation system, DRESREM 2. The pro-
posed system records reviewers’ eye movements and
mouse/keyboard operations and visualizes them to an-
alyze the relationship between review performance and
reading procedure. The system also provides features
to play back the eye movements and the operations for
a qualitative analysis of software review activities.

We experimentally evaluated the usefulness of the
proposed system. In the experiment, a design docu-

Design

Requirements

i

T T
1000 1500
Fixation ID

Figure 6. An example of eye movements.

ment review using multiple documents (requirements
specification, design document and others) was per-
formed. As a result, the system contributed to reveal-
ing the reading process that affected the review per-
formance. The result of a statistical analysis revealed
a significant correlation between the defect detection
ratio of ”omission of requirements” and review time on
requirements specification. This suggests that to find
the omission of requirements in the design document,
we need to read the requirements specification.

The major limitation of our experiment is that the
sample size was small (twelve subjects). Also, we used
just one software system to be reviewed. In the future,
we will increase the sample size with different software
systems. More detailed analysis of eye movements such
as function-wise (block-wise) analysis and time series
analysis are also important future work.

6. Acknowledgment

This work was conducted as a part of the StagE
Project, the Development of Next Generation IT In-
frastructure, supported by the Ministry of Education,
Culture, Sports, Science and Technology, Japan.

References

[1] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile,
F. Shull, S. Sgrumgard, and M. V. Zelkowitz. The em-
pirical investigation of perspective-based reading. An
International Journal of Empirical Software Engineer-
ing, 1(2):133-163, 1996.

[2] B. W. Boehm. Software Engineering Economics. Pren-
tice Hall, 1981.

[3] M. E. Fagan. Design and code inspection to reduce
errors in program development. IBM Systems Journal,
15(3):182-211, 1976.

[4] M. Halling, S. Biffl, T. Grechenig, and M. Kéhle. Using
reading techniques to focus inspection performance.
In Proceedings of 27th Euromicro Workshop Software
Process and Product Improvement, pages 248-257,
2001.

[6] O. Laitenberger, T. Beil, and T. Schwinn. An indus-
trial case study to examine a non-traditional inspec-
tion implementation for requirements specifications.
In Proceedings of Eighth IEEE Symposium on Soft-
ware Metrics, pages 97-106, 2002.

[6] O. Laitenberger and J. DeBaud. An encompassing life
cycle centric survey of software inspection. Journal of
Systems and Software, 50(1):5-31, 2000.

[7] A. A. Porter, L. G. Votta, and V. R. Basili. Compar-
ing detection methods for software requirements in-
spection - a replicated experiment. IEEE Transaction
on Software Engineering, 21(6):563-575, 1995.

[8] T. Thelin, P. Runeson, and C. Wohlin. An experi-
mental comparison of usage-based and checklist-based
reading. IEEE Transaction on Software Engineering,
29(8):687—704, 2003.

[9] H. Uwano, M. Nakamura, A. Monden, and K. Mat-
sumoto. Exploiting eye movements for evaluating
reviewer’s performance in software review. IEICE
Transactions on Fundamentals, E90-A(10):317-328,
October 2007.

[10] K. Wiegers. Peer Reviews in Software - A Practical
Guide. Addison-Wesley, 2002.

