
SHINOBI: A Tool for Automatic Code Clone Detection in the IDE

Shinji Kawaguchi∗, Takanobu Yamashina†, Hidetake Uwano‡, Kyhohei Fushida∗,
Yasutaka Kamei∗, Masataka Nagura∗§ and Hajimu Iida∗

∗Graduate School of Information Science,
Nara Institute of Science and Technology, Ikoma-shi, Nara, Japan

Email: {kawaguti, kyohei-f, yasuta-k, nag}@is.naist.jp, iida@itc.naist.jp
†Nihon Unisys, Tokyo, Japan

Email: takanobu.yamashina@unisys.co.jp
‡Department of Information Engineering,

Nara National College of Technology, Nara, Japan
Email: hideta-u@is.naist.jp

§Presently with Systems Development Laboratory, Hitachi, Ltd.

Abstract—Recent research has acknowledged that code
clones decrease the maintainability and reliability of software
programs, thus it is being regarded as one of the major fac-
tors to increase development/maintenance cost. We introduce
SHINOBI, a novel code clone detection/modification tool that
is designed to aid in recognizing and highlighting code clones
during software maintenance tasks. SHINOBI is implemented
as an add-in of Microsoft Visual Studio that automatically
reports clones of modified snippets in real time.

I. INTRODUCTION

Code clones are one of the major obstacles to software
maintenance. If a defect is contained in a code portion that
has been copied many times, we have to investigate not only
that code portion, but also all copied codes. This is very time
consuming especially for large scale software.

Presently, many code clone detection tools have been
proposed, with some of these tools highly integrated with the
development environment [1], [2], [3]. This is very important
as programmers change code clones using some sort of
development environment, not using clone detection tools.

These clone detection environments require the running
code clone detection to be manually switched on. However,
such manual detection cannot be run so frequently because
code clone detection from the whole source code takes
more than five or ten minutes for large scale software.
CloneTracker [1] reduces detection tool invocation by using
a Clone Regional Description (CRD). CRD is robust for
source code changes, and it enables tracking of code clones
if source codes are modified from when the code clone
detection was applied. However, CloneTracker needs to re-
run the code clone detection tool to detect newly created
code clones.

We believe that it is important to detect newly created
code clones so as to react to code clones in their early stages.
This is because it is practically recommended to refactor
code clones that appear too frequently as it is most likely not
part of the original design. In such a situation, the code clone

Edit Window
Code Clone View

(Add-in)

Figure 1. SHINOBI Client Screenshot

detection results should be shown in real time, reducing the
spread of this code clone and reducing refactoring.

This paper introduces SHINOBI, a tool for automatic
code clone detection. The main features of SHINOBI are
as follows.

• SHINOBI is highly integrated with Microsoft Visual
Studio. For instance, it is implemented as an add-in of
Visual Studio. A programmer can easily check and edit
detected code clones.

• SHINOBI automatically detects code clones with
source code being edited. The detection process is
automatic, implicit, and quick. A programmer can get
a list of code clones without noticeable time penalty
whenever he develops with the IDE.

• SHINOBI highlights code clones to help recognize
code clones during software maintenance tasks.

II. SHINOBI

Figure 1 shows a screenshot of SHINOBI. SHINOBI
automatically detects code clones being edited in Visual



Source Code

Usual Operation
(Move cursor, type

character, etc…)

Detected 
Results

Source
Code 

around
the Cursor SHINOBI SHINOBI SHINOBI SHINOBI 

ServerServerServerServer
SHINOBI SHINOBI SHINOBI SHINOBI 

ClientClientClientClient

Source Code
CVS Information

Detected
Results

EditorEditorEditorEditor

Operation
Event

Visual StudioVisual StudioVisual StudioVisual Studio

 
DeveloperDeveloperDeveloperDeveloper

CVSCVSCVSCVS
RepositoryRepositoryRepositoryRepository

Figure 2. An Architecture of SHINOBI

Studio from the whole source code. The list of detected
code clones are shown in the right pane. In the right pane,
we can confirm the number of code clones, location of each
code clone, and source code of each code clone.

SHINOBI has a token-based clone detection engine. This
engine is nearly unaffected by the change of a variable
identifier like CCFinder [4]. In practice, we implemented
clone detection engine referring to their paper.

SHINOBI is implemented as SHINOBI server and SHI-
NOBI client (Figure 2.) The SHINOBI server automatically
acquires and parses source code from a specified directory
or CVS repository. If you specify CVS repository, you can
register all file revisions, or newest files revisions only.
Next the SHINOBI server prepares the Suffix Array Index
to detect code clones quickly. Once the SHINOBI server
created the Suffix Array Index, it can search similar token
sequences in O(m log(n)) where m is token length of the
source code sent from the SHINOBI client, and n is the
number of all stored tokens. The SHINOBI server updates
the Suffix Array Index whenever new code is committed
to CVS repository. It requires very short time because the
SHINOBI server analyzes newly added or deleted source
code only.

The SHINOBI client always observes the cursor move-
ment in Visual Studio. The client sends source code to the
SHINOBI server if movement is detected. You can tweak
how log tokens are sent to the SHINOBI server. The default
is 50 tokens. The SHINOBI server then attempts to detect
code clones using Suffix Array Index. Finally detected code
clones are sent to the SHINOBI client which display the
results to developers in Code Clone View (the right pane in
Figure 1).

So as not to frustrate users, The SHINOBI server must
detect code clones very quickly. In our experimentation, the
SHINOBI server detects code clones less than 0.5 second for
4.5 MLOC software using 3.6GHz Pentium IV Windows XP
machine. We think it shows that SHINOBI can be used for
large scale software.

III. USAGE SCENARIO

SHINOBI tells you how many code clones exist in the
whole source code as soon as a copy of a code portion is
made. This feature helps us notice code clones and which
code needs refactoring at an early stage. Such automatic
detection is especially essential if you are unaware of other
developers creating clones. Using SHINOBI, you can see
how much code has been copied by other developers as well
as yourself.

SHINOBI is also used for software maintenance. When
fixing source code, SHINOBI informs of the code clones in
the source code which could be candidates of code to be
fixed. SHINOBI automatically detects code clones without
explicit code clone detection invocation. Without SHINOBI,
more attention is needed to identify code clones when source
code is fixed.

IV. CONCLUSION

In this paper, we introduced SHINOBI, a clone-aware
software development environment, highly integrated with
Microsoft Visual Studio. SHINOBI automatically and im-
plicitly detects code clones and shows them to help rec-
ognize them. Developers easily understand how many code
clones exist in the whole source code. As stated in Section
III, SHINOBI will be useful when developers have to edit
code clone in software maintenance tasks. SHINOBI is
available at http://sdlab.naist.jp/prj shinobi.html

ACKNOWLEDGEMENT

We would like to thank employees at Nihon Unisys
Ltd. for their cooperation and valuable advice. This work
was supported by StagE Project, the Development of Next
Generation IT Infrastructure, supported by MEXT.

REFERENCES

[1] E. Duala-Ekoko and M. P. Robillard, “Tracking code clones in
evolving software,” in Proceedings of the 29th international
conference on Software Engineering (ICSE2007), 2007, pp.
158–167.

[2] P. Jablonski and D. Hou, “CReN: a tool for tracking copy-and-
paste code clones and renaming identifiers consistently in the
ide,” in Proceedings of the 2007 OOPSLA workshop on eclipse
technology eXchange, 2007, pp. 16–20.

[3] R. Tairas, J. Gray, and I. D. Baxter, “Visualizing clone detec-
tion results,” in Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering
(ASE2007), 2007, pp. 549–550.

[4] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multi-
Linguistic Token-based Code Clone Detection System for
Large Scale Source Code,” IEEE Trans. Software Engineering,
vol. 28, no. 7, pp. 654–670, 2002.


