
�����������

�	�
�	

�
	���	��

�

���

〒 ��������

奈良県生駒市高山町 ������

奈良先端科学技術大学院大学

情報科学研究科

��������������	��

���� ������
�

�������� � �	
��
��	 ���	
����	 �	�	�����
��� ���
�����
�	 �
���	�
��	

�������� ����	
����
������� ������ ���
��

��	
���� ��	����� ������ ��	����� �������

�
���� �������
��
����� ����

����� ����

�������� ������ �� ����������� �������

���� ��������� �� ������� ��� ����������

	�� �
 ��!�����" �!���" ���� #������" $�%��

SHINOBI: A Real-Time Code Clone Detection Tool for
Software Maintenance

Takanobu Yamashina Hidetake Uwano Kyohei Fushida Yasutaka Kamei
Masataka Nagura Shinji Kawaguchi Hajimu Iida

Nara Institute of Science and Technology
8916-5, Takayama, Ikoma Nara, Japan

{takanobu-y, hideta-u, kyohei-f, yasuta-k, nag, kawaguti}@is.naist.jp iida@itc.naist.jp

ABSTRACT

Recent research describes how code clones in source code
decrease reliability of the program and require more development
cost. To solve the problem, several code clone detection methods
and tools have been implemented. In this paper, we propose a
novel code clone detection/modification tool to support the
software maintenance process. The proposed tool, SHINOBI,
indicates code clones in source code immediately by real-time
clone detection. The results of an evaluation experiment showed
the system had sufficient performance to support programmers in
a large-scale maintenance project.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques –
Program editors; D.2.7 [Software Engineering]: Distribution,
Maintenance, and Enhancement – Restructuring, reverse
engineering, and reengineering.

General Terms
Performance, Experimentation, Human Factors.

Keywords
Development Support Tool, Code-clone, Automatic Detection,
Real-Time Detection, Legacy Software, Maintenance

1. INTRODUCTION
Legacy software is a program that is still well used by the
community but was developed years ago. Many functions of
legacy software have been modified and corrected over the years.
Monden et al. show many modules in legacy software have code
clones in their source code [6]. A code clone (hereafter “clone”) is
duplicated code in the source code. A clone increases the
maintenance cost of the software because if a defect is found in
one of the clones, all relative clones must be inspected one-by-one
and be corrected if necessary. Also the clones decrease the
reliability of the entire system [4]. Clones that are not revised in
the clone modification because of clone detection omission cause
remaining defects. To support the clone detection process, many
studies focus on improvement of clone detection methods and
evaluation of the methods [1].

However, there are few studies that analyze programmers'
behavior in the software maintenance process, for instance, how
programmers detect clones in their development environment,
and/or what is a problem of clone detection in the maintenance
process. We believe understanding programmers’ behavior in

clone detection is useful knowledge for development of a more
efficient clone detection tool.

In this paper, we propose a clone detection/modification tool to
support the software maintenance process. First, we interview
programmers working on a large-scale legacy software
maintenance project to understand problems in the clone detection
phase and clone modification phase. Next, we propose a real-time
clone detection/modification tool, SHINOBI, to resolve the
problems found in the interviews. Finally, we apply SHINOBI to
a legacy software maintenance project to evaluate clone detection
performance and effectiveness.

2. PRE-EXPERIMENT
2.1 Overview
To study actual programmers’ behavior, we conducted two
preliminary experiments. In the first experiment, we investigated
how many revised files contained clones when one added
functionalities or fixed faults, and we confirmed how often the
clones were actually fixed at the same time. In the other
experiment, we conducted an ethnographic study by observing 3
programmers’ coding, and we interviewed 8 programmers to
clarify their motivations, method and process in maintenance
behavior of handling clones.

The target system is legacy software that is a commercial CAD
application. It has been developed for more than 10 years, and it
consists of 4,400 files and about 1,600,000 lines. The rate of
CVR1 is about 29% when measured by CCFinderX [3] (smallest
clone length is 50).

2.2 Results
2.2.1 Rate of Modified Code Clone
At first, we retrieve transactions from the CVS using the sliding
window approach in [7]: two subsequent commits by the same
author and with the same rationale are part of one transaction if
they are at most 300 seconds apart. Then, we calculate RC and RS
for each transaction. RC is the rate of transactions revising files
that have some clones. RS is the rate of transactions revising files
that share the same clones. RC and RS are calculated using the
following formulas:

Rc = CC / Call. Rs = CS / Call.

1 Ratio of tokens that are covered by any code clone

(C All programmers used GREP very frequently when they revised
source code, and they used it for searching for similar codes like
clones. However, providing appropriate keywords for GREP and
limiting the search target requires deep understanding of the
structure and terminology of the whole system. Therefore, it is
difficult for a novice to search for his target precisely with low
cost. It is more difficult to do it in large-scale legacy software
because the target is vast and the terms are not standardized
(Problem 4). Furthermore, by a questionnaire, it was difficult for a
veteran to find a clone, especially if their variable names are
changed (Problem 5).

C: number of transactions including modifications of a file with
clones, CS: number of transactions including modifications of
files with same clones，Call: number of all transactions)

If Rc is extremely low in comparison with Rs, it shows that the
revised files having the same clones were not committed at the
same time. It indicates that other revised files including the same
clones may have been overlooked, forgotten, or unknown. Figure
1 shows a simple example of the calculation of Rc and Rs. In this
example, the number of CC is 5 (T1,T3,T4,T5,T6), the number of CS
is 2 (T4,T5) ,and Call is 6 (T1 - T6). Therefore, Rc is calculated as
5/6 and Rs is calculated as 2/6.

PROCESS

Table 1 shows the results. RC and RS were each calculated as
79.3% and 9.7%. This result indicates that the modification of the
files with code clones during the software maintenance phase is
high, but it also indicates that the developer does not necessarily
modify other files related to this modification. This means
that developers may not be aware of the existence of code clones
during the software maintenance phase (Problem 1).

2.2.2 Observation and Interviews
MOTIVATION
Compared to veteran programmers, novice programmers tended
to revise only defective codes they found first, and not to search
and revise their clones (Problem 2). They seldom knew whether
clones of revised code existed. As they did not know where and
how to search for clones, it would take a lot of time if they had to
do so. Moreover, it is difficult to decide whether they should
revise the files even if they are able to search for those files
(Problem 3).

METHOD

In the maintenance process, a veteran’s code revising process was
different from a novice’s. The veteran started with confirming the
range where the revised codes and their clones would have
influence. Then, he decided a revision strategy and revised fault.
On the other hand, the novice revised the fault first, and then
began to search where the change had effect. Such blinkered, ad-
hoc changing may lack completeness, and novices could not
realize their mistake until they searched other influenced regions.
It makes software maintenance more time-consuming. In the
maintenance of a system that is already operating, we should
decide a revision strategy before revising the clones (Problem 6).

2.3 Requirements for Code Clone Detection in
Software Maintenance
To solve the problems in Section 2.2.1 and Section 2.2.2, we
propose the following requirements that clone detection tool
should fulfill.

Requirement 1: From Problems 1, 2 and 4, it is necessary to
detect clones without the programmer’s clear intention. In
addition, from Problem 6, it is necessary to detect clones before
programmers revise the source code.

Requirement 2: From Problem 3, it is difficult to make a
decision as to whether clones should be revised only by looking at
them. To support decision-making, it is necessary to display
additional information.

Requirement 3: From Problem 5, it is necessary to detect clones
even when a variable name is changed.

Requirement 4: It is necessary to detect clones fast in large-scale
legacy software.

3. SHINOBI: REAL-TIME CLONE
DETECTOR
We suggest SHINOBI (Rapid and Runtime Duplication Detector)
as a new tool for solving the problems acquired through the pre-
experiment.

3.1 Feature
We implement the following functions to satisfy requirements
described in Section 2.3

 From Requirement 1, SHINOBI is supported as an Add-In
of Microsoft Visual Studio 2005. It automatically detects
clones without the programmer's clear intention at the time
of opening and editing source code, and constantly displays
the detected clones on the view in IDE. Whenever the
programmer moves the cursor on the source code editor,

Table 1. Analysis result of modification of
file with code clones

name value

Number of all transactions (Call) 1890

Number of transactions including
modifications of a file with clones (CC)

1498
Rc = 79.3%

Number of transactions including
modifications of files with same clones.
(CS)

183
Rs = 9.7%

Timeline T1 T2 T3 T4 T5 T6

Figure 1. Simple example of calculation of Rc and Rs.

Same clones

Different clones

Rc＝5/6 Rs＝2/6

Same clones

Transaction

File with no
clones

File with clones

SHINOBI automatically detects clones before programmers
revise the source code.

 From Requirement 2, SHINOBI displays the detected clones
in order of the ranking f the similarity between the source
code on the cursor and the detected clones, and the
information in the CVS repository, such as message logs
and committed dates of the source code that is detected
clones.

 From Requirements 3 and 4, SHINOBI has a token-based
clone detection engine. This engine is nearly unaffected by
the change of a variable identifier, and it works fast in large-
scale software.

3.2 Tool Overview
Figure 2 shows the architecture and data flow of all of SHINOBI.
This tool is a Windows application developed on C++ and C#.
SHINOBI consists of the SHINOBI Server and SHINOBI Client. SHINOBI consists of the SHINOBI Server and SHINOBI Client.

3.3 SHINOBI Server 3.3 SHINOBI Server

3.4 SHINOBI Client 3.4 SHINOBI Client
The SHINOBI client, an Add-In for Visual Studio, always
displays clones that are similar to the code where the cursor is
located.

The SHINOBI client, an Add-In for Visual Studio, always
displays clones that are similar to the code where the cursor is
located.

3.4.1 IDE Add-In 3.4.1 IDE Add-In
Figure 3 shows our SHINOBI as an Add-In for the Visual Studio
programming environment. The right pane in Figure 3 is the Code
Clone View. Code Clone View always shows the clones related
with the region around the cursor. When the cursor position is
changed or the region around the cursor is edited, the SHINOBI
Client detects such interaction and automatically updates the
listed clones.

Figure 3 shows our SHINOBI as an Add-In for the Visual Studio
programming environment. The right pane in Figure 3 is the Code
Clone View. Code Clone View always shows the clones related
with the region around the cursor. When the cursor position is
changed or the region around the cursor is edited, the SHINOBI
Client detects such interaction and automatically updates the
listed clones.

The SHINOBI server performs clone retrieving and ranking. At
first, the SHINOBI server parses the CVS repository and prepares
SHINOBI Mining Data. After that, whenever a clone search
request arrives from the SHINOBI Client, the SHINOBI Server
detects clones and sends the results to the SHINOBI Client.

The SHINOBI server performs clone retrieving and ranking. At
first, the SHINOBI server parses the CVS repository and prepares
SHINOBI Mining Data. After that, whenever a clone search
request arrives from the SHINOBI Client, the SHINOBI Server
detects clones and sends the results to the SHINOBI Client.

The SHINOBI Preprocessor automatically acquires source code
and history information from the CVS Repository whenever the
CVS Repository is updated. It parses all the latest source code and
old revision source code from the CVS Repository and creates an
index using the Suffix Array [5] technique. We call it the Suffix
Array Index. The Suffix Array Index is essential to detect clones
very quickly. As a parsing tool, we use CCFinderX’s preprocessor,
which unifies identifiers to ignore differences of identifiers in
source code. The SHINOBI Preprocessor also analyzes commit
information and source-code differences. Such CVS Information
is also stored in the SHINOBI Mining Data.

The SHINOBI Preprocessor automatically acquires source code
and history information from the CVS Repository whenever the
CVS Repository is updated. It parses all the latest source code and
old revision source code from the CVS Repository and creates an
index using the Suffix Array

The Clone Detection & Ranking Module searches for clones
with the Search Key sent from the SHINOBI client using the
Suffix Array Index. The order of returned clones is determined by
Ranking Value. The Ranking Value is the sum of two values: 1)
the ratio of files committed at the same time and 2) the ratio of
files opened or edited at the same period in Visual Studio.

The Clone Detection & Ranking Module searches for clones
with the Search Key sent from the SHINOBI client using the
Suffix Array Index. The order of returned clones is determined by
Ranking Value. The Ranking Value is the sum of two values: 1)
the ratio of files committed at the same time and 2) the ratio of
files opened or edited at the same period in Visual Studio.

Code Clone

3.4.2 Code Clone View 3.4.2 Code Clone View
Figure 4 shows a screenshot of Code Clone View. It consists of
two views, Clone List View and File Information View.
Figure 4 shows a screenshot of Code Clone View. It consists of
two views, Clone List View and File Information View.
In a toolbar, some filter control buttons are arranged. You can
filter out some clones by toggling some conditions. The
conditions you can choose are described in Figure 4.

In a toolbar, some filter control buttons are arranged. You can
filter out some clones by toggling some conditions. The
conditions you can choose are described in Figure 4.

Clone List View displays the list of the clones detected by
SHINOBI. For each listed clone, Clone List View shows a file
name, revision, line number, Ranking Value, the author of the last
commitment, update day, comment, and the revision of creating
the clone.

Clone List View displays the list of the clones detected by
SHINOBI. For each listed clone, Clone List View shows a file
name, revision, line number, Ranking Value, the author of the last
commitment, update day, comment, and the revision of creating
the clone.
When you choose a file in Clone List View, SHINOBI displays
the contents of the selected file and opens the file in Visual Studio.
When you choose a file in Clone List View, SHINOBI displays
the contents of the selected file and opens the file in Visual Studio.

File Information View displays detailed contents of the clone
that you chose in Clone List View. It shows the actual source
code of the clone and additional information such as authors, the
number of times grouped by them, and comment contents.

File Information View displays detailed contents of the clone
that you chose in Clone List View. It shows the actual source
code of the clone and additional information such as authors, the
number of times grouped by them, and comment contents.

3.5 Comparison to Existing Tools 3.5 Comparison to Existing Tools
Existing clone detection tools like CCFinderX or ICCA [2]
analyze the entire software at once. Although it is useful when
you analyze clones in the entire software, many programmers
need clones only related to fixed code sections and the remaining
sections are ignored. In addition, existing tools require the user to
install stand-alone applications and learn how to use them. That
has a very high cost if there are many programmers and all of
them need to use it. However, they are suitable for analyzing
clones in the entire software by a skilled analyzer, but they are not
intended for use by many programmers in software maintenance.

Existing clone detection tools like CCFinderX or ICCA

[5] technique. We call it the Suffix
Array Index. The Suffix Array Index is essential to detect clones
very quickly. As a parsing tool, we use CCFinderX’s preprocessor,
which unifies identifiers to ignore differences of identifiers in
source code. The SHINOBI Preprocessor also analyzes commit
information and source-code differences. Such CVS Information
is also stored in the SHINOBI Mining Data.

[2]
analyze the entire software at once. Although it is useful when
you analyze clones in the entire software, many programmers
need clones only related to fixed code sections and the remaining
sections are ignored. In addition, existing tools require the user to
install stand-alone applications and learn how to use them. That
has a very high cost if there are many programmers and all of
them need to use it. However, they are suitable for analyzing
clones in the entire software by a skilled analyzer, but they are not
intended for use by many programmers in software maintenance.

Figure 2. SHINOBI architecture.

 CVS
Repository

Clone
List &

Ranking

SHINOBI Search
Key

Source Code

File Open/Edit
Cursor Moving

Clone List
& Ranking

Visual Studio
Clone Detection

& Ranking
Module

 SHINOBI
Mining Data

Code
Editor

SHINOBI
Client

SHINOBI
Preprocessor

User
Operation

Suffix Array Index
CVS Information

Figure 3. Screenshot of SHINOBI Add-In
for Visual Studio.

Programmer

Source Code

Suffix Array Index
CVS Information

CVS
Information

Compared to existing tools, SHINOBI is easy to introduce and
familiar for Visual Studio programmers because it is implemented
as a Visual Studio Add-In. SHINOBI automatically tells a
programmer where the clones exist without any user operations.
Thus if a programmer fixes some source code, they can know
where the duplicated codes exist without any operations. Since
SHINOBI detects clone only related to the source code that the
user is looking at, SHINOBI can react very quickly. Moreover,
SHINOBI provides a great deal of useful information such as a
revision history or indication of the commitment information.
Furthermore, SHINOBI always stores operations of the users and
precision of ranking will rise as much as you use it by reflecting
users’ decisions. Because you can confirm the timing when clones
are made or refactored, it is easy to make a correction strategy.
Therefore, SHINOBI would considerably improve maintenance
efficiency.

4. EVALUATION
We performed an experiment with SHINOBI. We analyzed how
many resources were necessary and how much time was
necessary for detecting clones. About both experiments, we used
source code of the commercial application that we described in
Section 2.1. We decided the Ranking Value using the rule
described in Section 3.3. However, because SHINOBI has not
been used in an actual development environment, we did not
consider the ratio of files referred to with an opened or edited file
in Visual Studio.

4.1 Evaluation Setting
We measured execution time to evaluate scalability and resource
consumption. At this time, we increased step-by-step the number
of subsystems to be analyzed by SHINOBI.
Then we evaluated the effectiveness by an intentional debugging
to measure detection accuracy. We prepared 24 modification
points to be debugged beforehand, and SHINOBI detected the
points. On the other hand, we detected the points by using GREP

command. We compared these detected points. In addition, we
obtained the values of Recall and Precision.
All measuring was run on a 3.6 GHz Pentium IV Windows XP
machine with 1 GB memory.

4.2 Results
Table 2 shows the results of measuring execution time. On
average, SHINOBI can detect clones within less than 0.5 sec even
in the case that it detects from more than 3,500,000 LOC legacy
code. Suffix Array Index Loading is the processing to load
indexes into memory and its time is increased linearly with the
amount of code. However, Clone Detection time is not affected so
much by the increases of LOC. Clone Detection time is
proportional to the log of LOC ideally because the searching of
the Suffix Array is performed as a binary search. Note that Suffix
Array Index Loading Time can be decreased when the SHINOBI
server always loads indexes into memory.

Toggle Displaying CVS History Code Clones
 Toggle Displaying all Code Clones

Table 2. Execution time
Num of subsystem 12 4 1
Num. of files 13,844 9,260 4,377
Num. of Tokens(M) 21.9 16.7 8.4
File Size (Mbyte) 401 366 186
Lines of code(MLOC) 4.5 3.2 1.7
Suffix Array Index Size (Mbyte) 110 84 42

E
xe

cu
tio

n
T

im
e

Suffix Array Index Loading
(ms)

250 187 156

Token Extraction (ms) 140 172 156
Clone Detection (ms) 14 6 1
Total (ms) 404 365 313

The Number of Display Code Clones
Filter option: Exclude this File

Filter option: Exclude this Clone
 Filter Setting

Table 3 shows the detection accuracy. The number of detections
using GREP is much higher than that using SHINOBI. It causes
values using GREP to have high Recall value and very low
Precision value, namely, detected points using GREP contain
many misses. Therefore, detection accuracy using SHINOBI is
much higher than using GREP command in general.

Table 3. Detection accuracy
 # Detection Time Recall Precision
GREP 205 62.0sec 96% 11%
SHINOBI 20 0.7sec 83% 100%

4.3 Discussion
SHINOBI is superior with both execution time and detection
accuracy. SHINOBI needs extra volume of the Suffix Array Index
to detect clones fast. About a quarter of File Size is needed for the
Suffix Array Index. When File Size is too large, it may also be so
large. However, this indexing technique gives a very high
advantage for execution time and File Size will be limited.
Considering this advantage, we think this problem is not
important.

5. CONCLUSION AND FUTURE WORK
In this article, we performed observation and interviews of the
maintenance work from the viewpoint of clones, and we analyzed
requirements for the clone detection tool. Then, we implemented
it as SHINOBI. This is executed as an Add-in of Visual Studio,
and always automatically displays the clone information that is
useful for programmer. In addition, we confirmed SHINOBI
performed rapidly for commercial large-scale legacy software
with certain accuracy. Furthermore, SHINOBI would reduce

Toolbar

Clone List View

File Information View

Figure 4. Screenshot of Code Clone View.

unthinking copy & paste because they are always aware where
clones exist.
In a future study, we will confirm the effectiveness of SHINOBI.
To confirm it, we will examine whether introducing SHINOBI
has a good effect for the ratio of revising clone files and the ratio
of increasing clones. In addition, we will observe whether
SHINOBI changes novice programmer behavior to search for
clones and to make a revision strategy at first. We also need to
evaluate the ranking of clones and improve the ranking
calculation algorithm if we need it. Subsequently, we want to
extend SHINOBI to suggest other useful information to support
understanding source code.

6. ACKNOWLEDGMENTS
We thank to employees at Nihon Unisys Ltd. for their cooperation
in our experiments. This work was supported by the
Comprehensive Development of e-Society Foundation Software
program of MEXT, and Stage Project, the Development of Next
Generation IT Infrastructure, supported by MEXT. This work was
partially supported by JSPS KAKENHI (18800024).

7. REFERENCES
[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,

" Comparison and Evaluation of Clone Detection Tools, "

IEEE Trans. on Software Engineering, vol. 33, no. 9, pp.
577-591, 2007.

[2] http://sel.ist.osaka-u.ac.jp/icca/index-e.html
[3] http://www.ccfinder.net/ccfinderx.html
[4] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J.

Hudepohl, " Assessing the Benefits of Incorporating
Function Clone Detection in a Development Process," Proc.
of IEEE Int'l Conf. on Software Maintenance, pp. 314-321,
1997.

[5] U. Manber and G. Myers, “Suffix Arrays: A New Method
for On-Line String Searches, " SIAM J. Comput. 22(5), pp.
935-948, 1993.

[6] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K.
Matsumoto, "Software Quality Analysis by Code Clones in
Industrial Legacy Software, " IEEE Symposium on Software
Metrics, pp. 87-94, 2002.

[7] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.
"Mining Version Histories to Guide Software Changes, "
Proc. of IEEE Int'l Conf. on Software Engineering, pp. 563–
572, 2004.

