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Abstract—In this paper, we present a replicated study
to predict fault-prone modules with code clone metrics to
follow Baba’s experiment [1]. We empirically evaluated the
performance of fault prediction models with clone metrics
using 3 datasets from the Eclipse project and compared it to
fault prediction without clone metrics. Contrary to the original
Baba’s experiment, we could not significantly support the effect
of clone metrics, i.e., the result showed that F1-measure of fault
prediction was not improved by adding clone metrics to the
prediction model. To explain this result, this paper analyzed the
relationship between clone metrics and fault density. The result
suggested that clone metrics were effective in fault prediction
for large modules but not for small modules.
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I. I NTRODUCTION

Recent code clone researches1 have investigated many
different software related issues, from software mainte-
nance [2], [17] to software license violation [21] as research
motivation shifts from“how do we effectively detect code
clones from a large software system? [13], [18]”to “how
do we make use of the detected code clones? [4], [24]”.

A useful application of code clone in software test-
ing/maintenance is to predict software quality with clones.
Baba et al. [1] has applied code clone metrics to a fault-
prone module prediction model [3], [22] . Through a case
study using 32 modules collected from one project, they
showed that the improvements of recall and precision were
0.125 and 0.097 compared to a prediction model without
clone metrics.

However, the performance of a prediction model often
depends on a dataset being used such as development
domain and development size [9]. To improve the generality
of experimental result of Baba’s study, it is preferable to
conduct a replicated experiment using other datasets. To our
knowledge, no study has reported the replicated experiment
of fault prediction with clone metrics.

We evaluated prediction performance using module
datasets from three versions (v3.0, v3.1 and v3.2) in Eclipse
project. However, unlike the result in Baba’s study, we could

1A code clone is a code portion in source files that is identical or similar
to another [14]

Table 1
EVALUATION SETTINGS

Babaet al. [1] This study
Granularity Component File

(a set of files)
Modeling
approach

Logistic regression Logistic regression

# of modules 40，32 8,313，9,663，11,525
% of faulty About 80.0% 17.2%, 18.6%, 18.4%
modules
Clone metrics 2 metrics 5 metrics

not obtain the improvement of the prediction performance
(Section III). In this paper, we analyze a relationship be-
tween clone metrics and bug density to understand why
no clone metrics could improve the prediction performance
(Section IV).

This paper provides the following contributions:

• We conducted a replicated experiment of the original
Baba’s study using a large open source system. The
result showed that clone metrics did not improve the
performance of a fault prediction model.

• Through the detailed analysis of the results, we found
that clone metrics are effective for fault prediction at
the component-level, but not effective at the file-level.

The remainder of this paper is organized as follows. Sec-
tion II surveys related work. Section III describes our study
design and the results of replication. Section IV presents
an analysis to figure out why we could not obtain the
improvement of prediction performance. Section V presents
the threats to validity. Finally, Section VI concludes the
paper.

II. RELATED WORK

In this section, we go through previous works related to
fault prediction models and the impact of code clones on
software reliability.

A. Predicting fault modules in software systems

Many fault prediction models have been proposed in
literatures [8], [19], [23], [25]. Test managers and quality
managers identify faulty modules using a prediction model,



then allocate more test efforts to the modules considered to
be fault-prone.

Nagappan and Ball [23] used relative code churn metrics,
which measure the amount of code change, to predict fault
density. They showed that process metrics (i.e., relative code
churn metrics) are better fault predictors than product met-
rics such as McCabe’s cyclomatic complexity. Zimmermann
and Nagappan [25] introduced the use of network analysis
on dependency graphs for fault prediction. They showed that
network metrics could identify 60% of the files developers
considered as critical. Mizuno and Kikuno [19] applied a
generic text discriminator to predict faults. The result of their
experiment showed that their approach could classify 78% of
the actual faulty modules as fault-prone. To our knowledge,
there is no study on fault prediction models using clone
metrics except Baba’s study [1].

B. Impact of code clones on software reliability

There are several studies that analyzed whether or not
code clones are harmful to software systems in terms of
software reliability.

Monden et al. [20] has tried to clarify the relationship
between code clones and software reliability. The experi-
mental result using an industry system showed that clone-
included modules are likely to be more reliable (less faulty)
than non-clone modules. The result also showed that the
modules including very large code clones (200≤ SLOC) are
less reliable than non-clone modules. Bettenburget al. [4]
performed an empirical study on the effect of inconsistent
changes to clones at the release level. They showed that
only 1% to 3% of the inconsistent changes introduced faults.
Selim et al. [24] studied the impact of code clones on
software faults using survival analysis. Using two open
source systems, they showed that clone-included modules
are not always more faulty than non-clone modules. In
contrast to those studies, we make use of clone metrics to
build a fault prediction model.

III. E VALUATION EXPERIMENT

A. Overview

To replicate the experiment conducted by Babaet al. [1],
we empirically evaluate the performance of fault prediction
model with conventional metrics (i.e., product metrics) and
clone metrics. Table 1 shows evaluation settings of Baba’s
experiment and our experiment. This study uses a source file
as a module and logistic regression analysis to build a fault
prediction model.

B. Dataset

1) Target Project: A target of our study is the Eclipse
software system, one of the well-known open development
platforms. We collected module datasets from three versions
(v.3.0, v.3.1 and v.3.2). They contained 8,313 modules
in version 3.0, 9,663 modules in version 3.1 and 11,525

Table 2
MEASURED METRICS OFECLIPSE DATASET

Metrics name Definition
Product SLOC Source Lines of Codes
metrics MLOC LOC executable

PAR Number of parameters
NOF Number of attributes
NOM Number of methods
NORM Number of overridden methods
NSC Number of children
NSF Number of static attributes
NSM Number of static methods
NBD Nested block depth
VG Cyclomatic complexity
DIT Depth of Inheritance Tree
LCOM Lack of Cohesion of Methods
WMC Number of Weighted Methods per

Class
SIX Specialization Index

(NORM+DIT)/NOM
Clone
metrics

NOC Number of code fragments of any clone
set in the file

ROC Ratio of duplication in the file
LEN Number of tokens in the clone set
NIF Number of source files including any

fragments of the clone set
McC Number of conditional branch and iter-

ation structure on in the clone set

modules in version 3.2. The percentages of faulty modules
were about 17.2%, 18.6% and 18.4% in these datasets.

2) Measured Metrics:For our experiment, we measured
product metrics and clone metrics (Table 2). The product
metrics measure the static structure of source code such as
source lines of codes and McCabe’s cyclomatic complexity.
The product metrics are measured using the Eclipse Metrics
plug-in [7].

We measured two clone metrics Babael al. used (NOC,
ROC) and three well-known clone metrics (LEN, NIF, McC)
in addition. We used CCFinderX [6] to detect code clones
from source codes and to measure clone metrics. We set
a threshold value of RNR2as 0.5 because previous study
suggested that clone sets whose RNR values are less than
0.5 are deemed uninteresting [12].

While NIF and ROC were calculated based on a unit
of a file, LEN, NIF and McC were calculated based on
a unit of a clone set. Since a source file often includes
multiple code clones, we need to calculate representative
values (e.g., maximum and median) in each module. We
used the maximum value for this study. For example, if a
file had clonesA, B and C, and cloneA had 20 tokens,
clone B had 30 tokens, and cloneC had 40 tokens, then
LEN in the file is considered to be 40.

3) Recovery of bugs:Based on the condition shown in
Table 3, we collected bug reports to determine whether or not
each module is faulty from Bugzilla3, which is provided by
the developer community of Eclipse. From the bug reports,

2RNR is the ratio of non-repeated code sequence in the clone set [12]
3https://bugs.eclipse.org/bugs/



Table 5
EXPERIMENT RESULT

Clone Metrics Prediction Performance (3.0→ 3.1)
No. NOC ROC LEN NIF McC Recall Precision F1-measure
1 .135 .639 .222
2 o o .130 .628 .215
3 o .128 .625 .212
4 o .131 .636 .218
5 o o o .136* .570 .219
6 o .136* .642* .224*
7 o .133 .570 .216
8 o .136* .642* .224*
9 o o o o o .131 .561 .213

Clone Metrics Prediction Performance (3.1→ 3.2)
No. NOC ROC LEN NIF McC Recall Precision F1-measure
10 .198 .629 .302
11 o o .203* .627 .306
12 o .200 .626 .303
13 o .203* .627 .306
14 o o o .200 .624 .303
15 o .200 .632* .304
16 o .200 .624 .303
17 o .199 .631 .303
18 o o o o o .203* .626 .307*
*:Best Performance

Table 3
CONDITION FOR COLLECTING BUG REPORTS

Classification Eclipse
Product Platform
Status of faults Resolved, Verified, Closed
Resolution of faults Fixed
Severity Except Enhancement
Priority All

Table 4
CONFUSION MATRIX

True class
Classified as Faulty Not Faulty
Faulty TP FP
Not Faulty FN TN

we obtained module names to associate faults with modules.
We also obtained the reported date and the modified date of
faults to associate faults with versions.

In this paper, we associate faults, modules and versions
by using Gyimothy’s approach [11].

First, we associate bug reports with modules. Each bug
report contains a patch file, and the name of a fixed module
is described in the patch file. Hence, we can associate faults
with modules. Then, we associate faults with versions. We
use the reported date and the modified date of a bug to figure
out which version of a module is faulty. As shown in Figure
1, for example, we consider the module for which a bug is
reported between version 3.0 and version 3.1, and the bug
is modified between version 3.2 and version 3.3 as a faulty
module between version 3.0 and version 3.2.

C. Approach

In this experiment, we perform cross-release prediction of
post-release failures. For cross-release prediction, a training
dataset is built from a released project in the past, and a test
dataset is built from following release.

A logistic regression model outputs a probability, between
0 and 1, for each module. We use a threshold value 0.5,
which means that if the output of the logistic regression
model is greater than 0.5, the module is classified as faulty
module, otherwise, it is classified as not [10], [11].

To evaluate the prediction performance, we em-
ploy commonly-used measures: precision, recall and F1-
measure [15]. These criteria can be measured from a confu-
sion matrix, as shown in Table 4. A module can be classified
as faulty module when it is truly faulty module (true positive,
TP); it can be classified as faulty module when actually it is
not faulty module (false positive, FP); it can be classified as
not faulty module when it is actually faulty module (false
negative, FN); or it can be classified as not faulty module
and it truly is not faulty module (true negative, TN).

Recall is the ratio of correctly predicted faulty modules to
the actual faulty modules (Recall = TP

TP+FN ) and precision

2.2 3.0 3.1 3.2 3.3
Release version

Bug reported Bug fixed

Versions where the bug is associated with the module

Figure 1. Eclipse version where a bug is associated with a module



is the ratio of actual faulty modules to the modules pre-
dicted as faulty (Precision = TP

TP+FP ). F1-measure is the
harmonic mean of recall and precision and is used to provide
an overall measure (F1measure = 2×Recall×Precision

Recall+Precision ).

D. Result

We present the result in Table 5. A “o” symbol in the
column “Clone Metrics” indicates which clone metrics are
used to build a prediction model. Each row from No.1 to
No.9 shows the results in Eclipse v3.0→ v3.1 and each
row from No.10 to No.18 shows the results in Eclipse v3.1
→ v3.2. In No.1 and No.10, we use only product metrics
to build the prediction model. That is, this result means a
baseline. The result using product metrics and clone metrics
Babaet al. used is presented in No.2-4 and No.11-13. The
result of our extended work is presented in No.5-9 and
No.14-18.

The result showed that the performances of prediction
models using LEN (No.6) and McC (No.8) were the best in
Eclipse v3.0→ v3.1. In Eclipse v3.1→ v3.2, the prediction
model using all the clone metrics (No.18) showed the best
performance. However, the improvements of F1-measure in
each version were only 0.002 and 0.005 compared to No.1
and No.10. This result suggests that clone metrics would
have no effect on the improvement of the performance in
fault prediction.�
�

�
�

No clone metrics could improve the performance of
a fault prediction model.

IV. A NALYSIS

A. Overview

We compare relationships between clone metrics and bug
(fault) density among versions to understand why there is
no effect of clone metrics on fault prediction.

The reason why we use bug density, not an existence
of a fault (faulty or not), is that we would like to remove
spurious relationship among source lines of code (SLOC),
clone metrics and the existence of a fault. In general, the
larger the SLOC, the larger the value of clone metrics and
the more likely a fault is introduced in a module. Even if
there is no actual relationship between clone metrics and the
existence of a fault, high correlation value could happen.
Therefore, we use bug density, which is normalized by
dividing the number of bugs by SLOC.

Dealing with size: SLOC slightly has an effect on bug
density. The modules is likely to have larger bug density
when it has more lines of code [16]. We classify and analyze
modules with sizes.

Dealing with imbalance: Our data sets are relatively
imbalanced, i.e., there exists a large difference between the
number of faulty modules and not-faulty modules. Many
modules in our data sets shows 0 as bug density. Therefore,

it is difficult to analyze a relationship between clone metrics
and bug density at fine-grained granularity (i.e., file-level).
To deal with this issue of data imbalance, we lift fine-grained
modules up to the course-grained. We classify clone metrics
into some class values. Then we bind modules that have
same class value of clone metrics together into one course-
grained module and analyze a relationship between bug
density and clone metrics at the course-grained granularity.

B. Approach

We calculate bug density as follows:

Step 1. Classification by SLOC: We classify modules into
three parts: a small size (SLOC< 100), a middle size
(100 ≤ SLOC< 500) and a large size (500 ≤ SLOC).

Step 2. Classification by clone metrics:We classify the
modules categorized in Step 1 into some classes based
on clone metrics.

Step 3. Measurement of bug density:We calculate bug
density by dividing sum of the number of bugs by sum
of SLOC in each course-grained module.

C. Result and Discussion

Figure 2 shows the relationship between clone metrics
and bug density. X-axis indicates clone metrics and y-axis
indicates bug density. The top part of this figure shows the
result for a small size, the middle part shows for a middle
size and the bottom part shows for a large size.

Version 3.0: We found that relationships between clone
metrics and bug density varied among three module sizes.
For example, for LEN, the bug density of the small size [a-
1] weakly demonstrates an upward tendency (Spearman’s
correlation value was 0.36). On the other hand, the bug
density of the large size [a-3] strongly demonstrates a down-
ward tendency (the correlation values was -0.89). The results
for NIF and McC showed a somewhat similar tendency as
LEN. For NIF, although the small size [b-1] had the upward
tendency (0.83), the large size [b-3] had the downward
tendency (-0.71). For McC, the middle size [c-2] had little
correlation (0.14), but the large size [c-3] had the downward
tendency (-0.71).

This finding explains the reason why we could not sig-
nificantly support the effect of the clone metrics for fault
prediction. Since the relationships between clone metrics and
bug density varies among modules sizes, the performance
of the prediction model would not improve because fault
prediction models were built from a dataset including all
the modules.

Version 3.1: Similar to the analysis result of the version 3.0,
the relationships between clone metrics and bug density were
different among three module sizes. For example, for LEN,
although the small size [a-1] had little correlation (-0.17),
the large size [a-3] strongly had the downward tendency (-
0.91).
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Figure 2. Relationship between clone metrics and bug density

Comparison between version 3.0 and version 3.1: In
small size modules, we found that relationships between
clone metrics and bug density were different between version
3.0 and version 3.1. For example, for LEN, the bug density
in version 3.0 weakly had an upward tendency (0.36), but the
version 3.1 had little correlation (-0.17). For NIF, contrary to
the result of version 3.0 (0.83), the version 3.1 had negative
correlation (-1.00).

This finding also explains why clone metrics are not
effective to improve the prediction performance.

On the other hand, for the large size modules, rela-
tionships between clone metrics and bug density showed
the same tendency in version 3.0 and version 3.14. For
example, the correlation values for version 3.0 and version
3.1 for LEN were -0.89 and -0.91 respectively. This suggests
why Baba’s experiment could improve the prediction perfor-
mance by clone metrics since Baba used component level
(i.e. large size) modules to build a prediction model. These
results indicate that clone metrics are effective for a fault

4The result for version 3.2 also showed a similar tendency as version 3.0
and version 3.1.

prediction model for large size modules such as component
level but not for small size (e.g., SLOC< 500).�

�

�



The relationships between clone metrics and bug
density were different among module sizes as well as
among versions. This is the reason why clone metrics
showed no effect on fault prediction. However, further
analyses showed that clone metrics could improve the
prediction performance for large size modules.

V. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of
our work. This study detected code clones from modules
using CCFinderX, because this tool was commonly used
in software reliability researches [4] and [24]. Replicated
studies using other clone detection tools (e.g., CP-Miner [18]
and DECKARD [13]) would be preferable to improve the
generality of our findings.

We used a dataset collected from one foundation
(Eclipse). Although this project is large and long-lived,
this project might not be the representative of all projects



out there. However, we believe that our work significantly
contributes to the validation of empirical knowledge.

We used the logistic regression analysis to evaluate the
performance of the fault prediction models, since this mod-
eling techniques is well-known for fault prediction [3], [5].
However, using other modeling techniques may produce
different results. We also used the maximum values of clone
metrics (LEN, NIF, McC) as representatives of code clones
in a module. Using other representative values (e.g., mean
and median) may lead to different results.

VI. CONCLUSION

In this paper, we empirically evaluated the effects of
clone metrics to fault prediction models using a dataset
collected from three versions of a large open source software
project. The result suggested that clone metrics would not
improve the prediction performance. To explain this result,
we analyzed the relationship between clone metrics and bug
density. Our major finding from the detailed analysis is that
clone metrics have an effect in fault prediction for large
modules (e.g, component-level) but not for small modules
(e.g., file-level).

In the future, we are planning to perform case studies with
other open source software systems from other domains. We
also consider to analyze modules of different granularity
such as component-level and method-level as a prediction
target.
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