
An Analysis of Cost-overrun Projects using Financial Data and Software Metrics

Hidetake Uwano
Department of Information Engineering
Nara National College of Technology

Nara, Japan
uwano@info.nara-k.ac.jp

Akito Monden
Nara Institute of Science and Technology
Graduate School of Information Science

Nara, Japan
akito-m@is.naist.jp

Yasutaka Kamei
Graduate School and Faculty of Information Science

and Electrical Engineering
Kyushu University

Fukuoka, Japan
kamei@ait.kyushu-u.ac.jp

Ken-ichi Matsumoto
Nara Institute of Science and Technology
Graduate School of Information Science

Nara, Japan
matumoto@is.naist.jp

Abstract—To clarify the characteristics of cost-overrun
software projects, this paper focuses on the cost to sales ratio of
software development, computed from financial information of
a midsize software company in the embedded systems domain,
and analyzes the correlation with outsourcing ratio as well as
code reuse ratio and relative effort ratio per development
phase. As a result, we found that a lower cost to sales ratio
projects had the higher relative effort ratio in the external
design phase, which indicates that spending less effort on
external design can cause decrease of profit. We also found
that high outsourcing ratio projects had a higher cost to sales
ratio, and that projects having a moderate code reuse ratio had
a lower and disperse cost to sales ratio, which suggests that
troubles in code reuse can damage the profit of a project.

Keywords-Cost overrun project, Cost to sales ratio,
Development phase, Outsourcing, Reuse

I. INTRODUCTION

An excess production cost over scheduled cost is
commonly seen in software development [1]. Major reasons
for such project cost-overruns include insufficient
requirement analysis, lack of project management, poor
effort estimation, and frequent change requests.

To understand the characteristics of such “failure”
projects, case studies and assessments for failure project
analysis have been performed [2][3][4]. Also software risk
evaluation (SRE) techniques [5][6][7] and estimation
methods for project failure [8] proposed. These studies are
useful for reducing project failure in future software
development.

This paper focuses on the cost-to-sales ratio, which past
research had not focused on, to distinguish success and
failure of software projects. Although financial information
of software development projects is an important source to
understand the project’s results, few studies have been made
so far. The cost to sales ratio directly indicates a project’s
profitability; hence, it is useful to analyze relationships

between the cost to sales ratio and such software metrics as
effort in each development phase, to clarify factors of
software success/failure in terms of project profit.

In our analysis, we computed the cost to sales ratio from
financial data collected in a midsize software development
company. This metric indicates how much profit was gained
in each project excluding general administrative cost such as
office rent cost. The project can be considered a “failure”
when the cost to sales ratio was greater than a threshold
(90% in this paper.)

To characterize each project, we focus on (1) the relative
effort ratio in each development phase, (2) the outsourcing
ratio, and (3) the code reuse ratio. These metrics are suit our
analysis because they are directly connected with project
types and/or management strategies.

The rest of the paper is organized as follows: Section 2
and Section 3 describe project data and metrics used in the
analysis. In Section 4, we discuss the result of the analysis.
Finally we conclude the paper in Section 5.

II. TARGET PROJECT

In this analysis, we used a dataset consisting of 95
projects held in a midsize software development company.
The main business domain of the company is embedded
software development for wired/wireless communication
systems, image processing systems, and public transportation
systems.

In this company, most projects are contract-based
development; they develop software based on requirements
given by other organizations. Hence, most projects consist of
development phases after the requirement analysis, i.e.
external design, internal design, implementation, unit testing
and integration testing. To focus on the main development
activity of this company, in our analysis we excluded
projects that had spent more than 50 percent effort for
requirement analysis or maintenance.

Table 1 shows statistics of a dataset we used in the
analysis, which include median, average, standard deviation,

and the number of data cases (projects). In this paper, the
production cost includes personnel cost, material cost,
outsourcing cost, and other costs consumed in a project,
while it excludes general administrative cost. Source lines of
code (SLOC) is counted as following three variables:

Created lines

The number of lines newly created in the target project.

Reused lines
The number of lines created in other projects and used in

the target project without modification.

Modified lines
The number of lines created in other projects and

modified in the target project.

In Table 1, the median of effort in the requirement

analysis phase is zero because most of projects started from
the external design phase. Also, the median of modified lines

is zero; many projects had reused lines without modification
in the source code.

III. METRICS

This Section describes three metrics that can
characterize the cost-overrun projects by analyzing their
relationship with cost to sales ratio of projects, which
relationship defines the success/failure of projects. Table 2
shows a list of the metrics and their statistical summary.

A. Cost to Sales Ratio

Cost to sales ratio is a percentage of production cost in
sales of a target project; less than 100 percent denotes that
the project gains a profit by itself. However, we also need to
consider general administrative costs such as office rent
and/or the equipment’s upkeep required to run the company.
Hence, the cost to sales ratio of each project must be less
than a certain threshold less than 100.

To determine the threshold for this company, the authors
interviewed two managers. As a result, we confirmed that the

TABLE I. STATISTICS OF A DATASET USED IN THE ANALYSIS

Missing

value (%)
Median Average

Standard
deviation

Sales (1,000 JPY) 0 15,574 34,398 46,042

Production cost (1,000 JPY) 0 13,620 30,298 39,986

Effort(Man-Hour)

Requirement analysis 0 0 199 390

External design 0 845 1,828 2,650

Internal design 0 359 1,177 2,023

Implementation 0 530 832 1,158

Unit testing 0 252 567 817

Integration testing 0 366 823 1,421

Other* 0 283 864 1,332

Source Lines of Code
(SLOC)

Created lines 21.1 14,354 61,110 181,828

Reused lines 21.1 88,400 278,153 520,187

Modified lines 21.1 0 4,096 8,883
*Operations, education, maintenance, etc.

TABLE II. STATISTICS OF DERIVED METRICS

Metrics
Number of

data
Median Average

Standard
deviation

Relative
effort
ratio

Requirement analysis

68

0.00 5.10 7.86

External design 32.81 32.45 10.80

Internal design 17.70 17.49 9.08

Implementation 15.64 17.40 8.59

Unit test 10.68 11.16 4.76

Integration testing 14.46 16.40 7.71

Outsourcing ratio 95 52.54 43.33 27.11

Code reuse ratio 75 75.29 65.48 33.28

average general administrative cost is about 10 percent of
sales, which means that the threshold of cost to sales ratio in
this company is 90. In this paper, a project that has a 90 and
more cost to sales ratio is labeled as a “failure” project, and a
project less than 90 is labeled as a “success.” We also
confirmed the classification of success/failure projects by
whether a cost to sales ratio meets the manager’s intuition of
success/failure.

Fig. 1 shows a distribution of the cost to sales ratio in the
dataset. About 70 percent of the projects are classified as
“Success,” and 87 percent of the projects are in the range of
a 70 to 100 cost to sales ratio.

B. Relative Effort Ratio

The relative effort ratio is a percentage of effort (man-
hours) spent in each development phase compared to the
total man-hours spent on a whole project. For each phase, it
can be considered that a project having much smaller or
greater relative effort than other projects has a high risk of
failure. For example, a project that had spent less effort in
the requirement analysis and/or design phase can cause
excess coding and/or testing effort because of a need of
rework in requirement analysis and/or design in later phases.

In this analysis, as an analysis target, we selected 68
projects which performed all five development phases
(external design, internal design, implementation, unit test
and integration test).

C. Outsourcing Ratio

A lot of software development organizations outsource a
part of the development phase for flexible human resource
management and/or to reduce the development cost.
Preparation of sufficient manpower to each development
project is one of the most important issues for a
managing/administrative person. A proper use of outsourcing
in software development increases the flexibility and
efficiency of management; however, it also increases a risk
of project failure.

In this paper, the outsourcing ratio in each project is
calculated as the proportion of outsourcing cost to the
production cost of a project. Data from 95 projects were used

for this analysis.

D. Code Reuse Ratio

The code reuse ratio depicts how many lines of source
code were reused from past software. Reuse of a source code
or a design document from past similar software is essential
to efficient and speedy development. Reused source code has
a better quality than new source code in general because it
was already tested when the source code was created.
Therefore, a higher code reuse ratio will decrease the risk of
excess test effort for correction of unpredictable defects. On
the other hand, understanding of the past project for correct
reuse of source code is a time-consuming and difficult task
especially when the project has poor documentation. Code
reuse without correct understanding will increase the cost of
defect correction and testing.

Many recent software products were developed as
maintenance or enhancement projects, hence, to understand
the effect of code reuse on the project result is essential. In
this paper, the code reuse ratio is calculated as proportion of
reused lines to total lines of code (sum of created lines,
reused lines, and modified lines.) In the analysis, we used 75
projects that had no missing value in the code reuse ratio.

IV. RESULTS AND DISCUSSION

A. Relative Effort Ratio

Table 3 shows the relative effort ratio in each
development phase. The table shows that success projects
tend to have a higher relative effort ratio in the external
design phase and a lower relative effort ratio in the
requirement analysis phase. There is no tendency at the
internal design, implementation, unit testing, and integration
testing phases. Fig. 2 shows a box-plot of the relative effort
ratio in external design phase. Each box and whiskers
describe a range of relative effort ratio in the external design
phase. The figure shows failure projects have a larger box

TABLE III. RELATIVE EFFORT RATIO IN EACH PHASE

Project
result

Median p-value

Requirement analysis
(%)

Failure 3.37
0.103

Success 0.00

External design (%)
Failure 28.18

0.015
Success 34.31

Internal design (%)
Failure 19.86

0.396
Success 17.22

Implementation (%)
Failure 16.66

0.264
Success 15.41

Unit testing (%)
Failure 10.29

0.545
Success 10.68

Integration testing
(%)

Failure 13.67
0.501

Success 15.21

Cost to sales ratio

F
re

q
u

e
n

cy

Figure 1. Frequency distribution of cost to sales ratio.

(i.e. disperse relative effort ratio) than success projects. The
result of Mann-Whitney U Test shows a significant
difference (p=0.015) between success and failure projects.

The result suggests failure projects spend insufficient
man-hours in the external design phase, and cause more
reworks and defect corrections. On the other hand, success
projects could avoid reworks and defect corrections by
proper external design with sufficient effort.

B. Outsourcing Ratio

Median values of outsourcing ratio in success projects
and failure projects were 47.2 percent and 54.3 percent
respectively. Fig. 3 shows that the outsourcing ratios in both
groups were greatly dispersed, and there is no significant
difference (p=0.501.)

We also investigated the correlation between the cost to
sales ratio and the outsourcing ratio for more detailed
understanding. We divided the projects into three groups:

1) Largely

Projects having a 50 percent or more outsourcing ratio.

2) Partly
Projects having a greater than 0 percent and below 50

percent outsourcing ratio.

3) None
Projects of zero (0 percent) outsourcing ratios.

Fig. 4 describes a box-plot of cost to sales ratio in each

group. The figure shows higher outsourcing projects tend to
have a higher cost to sales ratio. Median values of
outsourcing ratios and cost to sales ratios in each group are
shown in Table 4. The result of a Mann-Whitney U Test
showed significant differences (p=0.034) between “Largely”
outsourcing projects and “None” outsourcing projects. This
result can be interpreted as follows: largely outsourcing
projects need additional efforts for meetings with a
contractor and/or an acceptance test of deliverables. In
addition to this, defect correction of deliverables created by
the contractor tends to take longer time than that of in-house
documents. Hence in total the project will be delayed and
consume unscheduled resources.

C. Code Reuse Ratio

The code reuse ratio in success/failure projects are shown
in Fig. 5. Median values of “success” and “failure” projects
were 66.7 percent and 87.0 percent respectively. However,
both groups have a large variance of code reuse ratio. Also in
both groups, projects that have a very high code reuse ratio
were observed. As a result, there are no significant
differences (p=0.139) between them.

TABLE IV. COST TO SALES RATIO IN DIFFERENT OUTSOURCING

RATIO PROJECTS

 # project
Outsourcing

ratio
Cost to

sales ratio
Largely 49 64.3% 87.6%
Partly 29 31.2% 85.2%
None 17 0.0% 80.1%

R
el

at
iv

e
e

ffo
rt

 r
a

tio
 in

ex

te
rn

a
l d

e
si

gn
 p

ha
se

Success Failure

60.0

40.0

20.0

0.0

Figure 2. Relative effort ratio in external design phase of
success/failure project.

O
u

ts
o

u
rc

in
g

 r
a

tio

60.0

40.0

20.0

0.0

100.0

80.0

Success Failure

Figure 3. Outsourcing ratio of success/failure project.

C
os

t t
o

 s
al

es
 r

a
tio

Outsourcing ratio

60.0

120.0

140.0

100.0

80.0

None LargelyPartly

 Figure 4. Box plot of cost to sales ratio in different outsourcing
ratio projects.

A more detailed analysis of the code reuse ratio is
described in Fig. 6. We hypothesize that a difference in the
code reuse ratio represents different types of project. Here,
projects were divided into three groups:

1) New

Projects having zero (0 percent) code reuse ratios.

2) Enhancement
Projects having greater than 0 percent and below 99

percent code reuse ratios.

3) Maintenance
Projects having 99 percent or more code reuse ratios.

Fig. 6 shows a low cost to sales ratio in “maintenance”

projects and “new” projects. On the other hand,
“enhancement” projects had a higher (and also more
dispersed) cost to sales ratio than others. Basically, the sales
price of software is determined from production cost
estimated at the beginning of the project. Therefore, this
result suggests that the estimation of production cost in

enhancement projects is inaccurate. Table 5 shows the
median of code reuse ratio and the cost to sales ratio in each
group. Statistical testing revealed a significant difference
between “enhancement” and “maintenance” (p=0.033.)

In “new” and “maintenance” projects, additional work to
combine the new code with the existing code (i.e.
understanding or testing the existing code) is relatively small,
i.e. risk of unexpected additional work is low. Hence, less
than 90 percent of the projects finish within scheduled cost to
sales ratio. In an “enhancement” project, the developer must
understand a wide range of existing code to combine with
new codes. It is difficult to predict effort accurately;
therefore the cost to sales ratio dispersed in “enhancement”
project.

For more understanding of “enhancement” projects, we
divided the group into three subgroups according to the cost
to sales ratio. Table 6 shows the median of cost to sales ratio
in the three subgroups. The table describes that projects
which reuse the source code more than 90 percent and below
99 percent had a worst cost to sales ratio. This subgroup
showed significant differences between “new” and
“maintenance” projects. The result suggests that the
enhancement project that had high code reuse ratio (between
90 percent and 99 percent) was the most risky in this
company.

V. SUMMARY

This paper focused on the cost-to-sales ratio to
distinguish success and failure of software projects in terms
of project profit. Statistical analysis with financial data and
software metrics suggested that, financially “success”
projects had higher effort rate in the external design phase
than “failure” projects. Also the result showed a tendency for
high outsourcing ratio projects to have a higher cost to sales
ratio than low outsourcing ratio projects, and middle code
reuse ratio projects had a higher and disperse cost to sales
ratio than others.

Our analysis is based on a dataset from a midsize
software company; hence supplementary analysis with other
datasets is crucial to generalize the result. However, the
results must be a valuable for software development
organizations in similar business domains.

We used software metrics measured at the end of projects.
In our future work, we plan to analyze the gap between
planned metrics values and the resultant values to clarify the
root causes of project success/failure.

TABLE V. COST TO SALES RATIO OF DIFFERENT CODE REUSE

RATIO PROJECTS

 # project
Code reuse

ratio
Cost to

sales ratio
Maintenance 7 99.8% 80.1%
Enhancement 58 77.2% 88.5%

New 10 0.0% 85.7%
 C

od
e

re
us

e
ra

tio

0.0

60.0

80.0

40.0

20.0

100.0

Success Failure
Figure 5. Code reuse ratio of success/failure project.

Code reuse ratio
New MaintenanceEnhancement

C
os

t t
o

sa
le

s
ra

tio

60.0

120.0

140.0

100.0

80.0

Figure 6. Box plot of cost to sales ratio in different code reuse ratio
projects.

ACKNOWLEDGMENT

This work is being conducted as a part of Grant-in-aid for
Young Scientists (B), 22700043, 2011, supported by the
Ministry of Education, Culture, Sports, Science and
Technology, Japan.

REFERENCES
[1] E. H. Conrow and P. S. Shishido, ”Implementing Risk

Management on Software Intensive Projects,“ IEEE Software,
Vol.14, No.3, pp.83-89, 1997.

[2] B. W. Boehm, “Industrial Software Metrics Top 10 List,”
IEEE Software, Vol.4, No.5, pp.84-85, 1987.

[3] C. Wohlin and A. A. Andrews, “Prioritizing and Assessing
Software Project Success Factors and Project Characteristics
using Subjective Data,” Empirical Software Engineering,
Vol.8, pp.285-303, 2003.

[4] A. Avritzer and E. J. Weyuker, “Metrics to Assess the
Likelihood of Project Success Based on Architecture
Reviews,” Empirical Software Engineering, Vol.4, pp.199-
215, 1999.

[5] D. J. Procaccino, J. M. Verner, S. P. Overmyer, and M. E.
Darter, ”Case study: factors for early prediction of software
development success,“ Information and Software Technology,
Vol.44, No.1, pp.53-62, 2002.

[6] R. C. Williams, G. J. Pandelios, and S. G. Behrens, ”Software
risk evaluation (SRE) Method Description (Version
2.0),“ Software Engineering Institute Technical Report,
CMU/SEI99TR029, 1999.

[7] J. M. Verner, W. M. Evanco, and N. Cerpa, ”State of the
practice: An exploratory analysis of schedule estimation and
software project success prediction,“ Information and
Software Technology, Vol.49, No.2, pp.181-193, 2007.

[8] Y. Takagi, O. Mizuno, and T. Kikuno, ”An empirical
approach to characterizing risky software projects based on
logistic regression analysis,“ Empirical Software Engineering,
Vol.10, No.4, pp.495-515, 2005.

TABLE VI. MEDIAN OF COST TO SALES RATIO IN “ENHANCEMENT” PROJECT

 # project
Code reuse

ratio
Cost to

sales ratio
More than 90% and below 99% 17 97.0% 91.0%
More than 80% and below 90% 11 87.0% 89.3%

Below 80% 30 57.3% 84.9%

