
Aggregation of Development History from
Distributed Support Systems

Hiroki Kawai
Department of Information Engineering
Nara National College of Technology

Nara, Japan
Email: h-kawai@info.nara-k.ac.jp

Hidetake Uwano
Department of Information Engineering
Nara National College of Technology

Nara, Japan
Email: uwano@info.nara-k.ac.jp

Soichiro Tani
Graduate School of Information Science

Nara Institute of Science and Technology
Nara, Japan

Email: soichiro-t@is.naist.jp

Abstract—This paper proposes a method to recommend the
relevant information of the document which recorded in the
development support systems such as BTS and VCS. We improve
a system which we implemented in previous work with the
method proposed in this paper. Our method get a document
from the support systems, extract the word, then calculate the
feature vector based on the TF-IDF value of each word. In the
experiment, we apply the proposal method to the dataset from an
open source software projects, and evaluate the recommendation
accuracy between the six clustering algorithm. The result of
the experiment shows that the proposed method improves the
recommendation accuracy compared with the previous work.

I. INTRODUCTION

With increasing outsourcing of software development or
open source software projects, developers need to collaborate
with geographically distributed co-workers and share informa-
tion between them. Communications between distributed co-
workers are very important for efficient, high-quality software
development, however, it is difficult because of distance and
the time differential between them [1]. In such the envi-
ronment, they communicate each other with asynchronous
communication tools/systems such as mailing list (ML), bug
tracking system (BTS) or version control system (VCS) that
we call development support systems (DSS) in this paper
[2][3].

These DSSs record the information such as clash report, step
to reproduction, assignment of a developer, and source codes
after the fault correction. Such records that stored in different
DSSs are usually referenced simultaneously to understand the
whole context of the fault correction or function enhancement.
For example, developer who assigned to a fault reads the clash
report in the BTS, understands the plan to fixation discussed
on ML, and specify the code to fix from VCS records. Also
they examine past records of similar fault or enhancement to
refer discussions or source codes.

On the other hand, examine the records which belong
to a context from multiple DSSs is difficult. For example,
developer who assigned a fault has to read mails stored in
ML and tickets in BTS which concern with the fault. To do
this, the developer needs knowledge of the fault to search
the BTS and ML. However, such knowledge or context is
lacking from the record in DSSs, and also difficult to estimate
from mails or tickets. Some system integrates multiple DSSs

and allows developers input connection between information.
Such integrated system support the developers to understand
the context, yet difficult to apply small-scale organization and
open source software project because they often use a rental
hosting service such as SourceForge.net.

For such problem, authors proposed a system that recom-
mends the information belong to same context of an infor-
mation which developer currently watching [4]. The system
serves as a proxy server which detects user’s access to DSSs,
collects the same information that the user refers to, and make
an association with several kinds of the referred information
in multiple DSSs. In this paper, we propose an algorithm
to improve recommendation accuracy of the system. Our
proposal algorithm extracts a characteristic of each information
from the words which used in the information by TF-IDF
method. Using a cluster algorithm, group of information which
divided in same cluster is recommended to the user.

The rest of the paper is structured as follows. Section II
explains DSSs and their problems while use them simulta-
neously. Section III describes our method to integrate the
information between multiple DSSs. In Section IV and V,
we discuss experiment and the result. Finally, Section VI
concludes the paper with future work.

II. DEVELOPMENT SUPPORT SYSTEMS

Development Support Systems (DSS) helps developers
share the information to collaborate with other developers
on development. Most of software development projects use
multiple DSSs in their project. For example, when a developer
found a fault in their software, s/he 1) reports the fault at the
BTS, 2) discusses correction policy through the ML, and 3)
commits a corrected source code to VCS. Each development
project selects or creates the DSSs which proper for their
projects. On the other hand, small scale projects or organi-
zations such as Open Source Software (OSS) projects employ
free hosting DSS services such as Google Code1 or Source
Forge2 to reduce the management cost.

In case of using multiple DSSs in the project, each developer
needs to search several kinds of information in DSSs to

1http://code.google.com/hosting/
2http://sourceforge.net/

Fig. 1. Development Context in Multiple DSSs

understand the development context. Fig. 1 shows an example
of development context exist at multiple DSSs.

Three rounded rectangles represent VCS, BTS, and ML
system respectively. Each ellipse in the DSSs show describe
the information recorded in each systems such as bug report,
mail, and commit comment. Dotted lines between the informa-
tions show these informations belong to a same development
context. As shown in the figure, each information in same
context recorded in the different systems based on the type of
the information. Developers search the informations with the
context which they understood through the project.

Information search from the DSSs are extremely difficult
when the developers have a minor knowledge about the
context. For instance, a fault was reported on the BTS with
a few explanation of the fault, then discussion and change
history were recorded in ML and VCS. Here, a developer
who has no knowledge about the fault must review the
bug report, then speculate the keywords to search the other
DSSs. This is a time-consuming, lead-to-mistake work for the
developer. Despite for this, context during the development is
not recorded in the DSSs; most of DSS depends on manual
recording of links to related information by the developers.
Therefore, developers who recently joined the project is hard
to understand the context of the project

To resolve the problem explained above, some systems
which integrate the multiple DSSs are proposed[5]. Integrated
system manages the information such as bug report, mail,
commit history, and other information. The system allows
the developer searches different informations which belong to
different types at a time. However, there are some problems
to be solved;

• Difficult to transfer information from existing DSS
Proposed integration systems have an insufficient ex-
port/import function of the information and their con-
nection. Replace the system without export/import of the
information or with manual re-input is impractical.

• Cannot connect external hosting services
Some of the integrated system allows to connect between
DDSs by modify the existing DSSs. However, rental
hosting services that used in the OSS projects cannot
modify, hence such systems are limited to adopt.

• Lack of functionality
When using the multiple DSSs in the project, developers
select the each DSS based on the functionality of each
system. On the other hand, when using the integrated sys-
tem in the project, developers can use only the function
which integrated system provide.

To tackle the above problems, authors developed a system
that integrate the multiple DSSs into an integrated system
without any modification[4]. Our system runs as Web proxy
server in the user computer, and detects the access to a DSS
through the HTTP. The system captures the information from
the user access to the DSS, calculate the related information
from other DSS, and then combine them. The combined
information is displayed to the user as the result of access
to DSS. Fig. 2 shows an example of the system output.

Left side of the figure shows a default output of VCS used in
an open source software project. Right side of the figure shows
a VCS output with recommendation result by our system.
In addition to the default output, lists of related documents
recorded in BTS and VCS are displayed. Here, the system
recommends the five relevant documents from each DSSs.

The system works as proxy server in the user computer,
hence, the user can use the stored information in each DSS
without any modification. Current implementation of the sys-
tem requires specific keywords which represents the context
of the each development project. The keywords are specified
by the developer who understands the project, although the
selection of the keywords affects the recommendation accu-
racy. A set of documents in a development project is updated
frequently, hence the recommendation based on such the
static keywords decrease the accuracy. Therefore, our proposal
method uses TF-IDF to select the keyword dynamically. In this
paper, we propose an algorithm to improve recommendation
accuracy of the our system without keywords selection.

III. PROPOSAL METHOD

Our proposal method extracts a list of words which used
in every information from DSSs by word segmentation, then
calculates TF-IDF of each word; TF-IDF matrix consisting
of the words that contained in the each information is used
as feature vector. The method clusters the information with
clustering algorithm based on the TF-IDF matrix. Information
in the same cluster is recommended as a related information.

A. Word Segmentation

Word segmentation divides written text into meaningful
words. We use the word segmentation tool to extract the words
from each information and count them. As an implementation,
we selected open source morphological analysis tool, MeCab
[6].

B. TF-IDF

TF-IDF is a statistical metric which reflects how important
a word is for characterize a document in a set of documents
[7]. TF-IDF value is calculated from following formula.

Fig. 2. Screenshot of the proposal system[4]

tfc,n =
dc,n∑C
i=1 di,n

(1)

idfc = loge
|D|

|{d : tc ∈ d}|
(2)

TF − IDFc,n = tfc,n · idfc (3)

tfc,n describes how many contained a word c into a
document n. Here, dc,n means the number of c contained in
n. idfc describes how appear c in a set of document. |D|
shows a total number of document in the document set, and
|{d : tc ∈ d}| describes the number of document which include
c. The higher value of idf describes the word c appears at only
a few documents; that is the document n is characterized by
the word c. A set of TF-IDF values derived from the words
within a document represents a feature vector of the document.
Our method employs the feature vector an array of TF-IDF
values as a feature quantity of the information from DSSs.

C. Cluster Analysis

Cluster analysis classifies a set of objects into groups based
on the characteristics of each object. We adopt the cluster
analysis to recommend a set of information which similar to
the information the user is currently browsing from DSSs. The
process of clustering in our method is as follow;

1) Divide the each information in the DDSs as different
clusters.

2) Calculate distance between clusters with clustering al-
gorithm.

3) Connect two clusters that is nearest than others as one
cluster.

4) Continue the step two and three until the every cluster
is connected.

We compare the major six algorithms to calculate the
distance between clusters described below;

• Complete Linkage Method
The maximum distance between a document in one
cluster and a document in other cluster is used as the
distance between the clusters.

• Single Linkage Method
The minimum distance between a document in one cluster
and a document in other cluster is used as the distance
between the clusters.

• Group Average Method
The average distance between documents in one cluster
and documents in other cluster is used as the distance
between the clusters.

• Centroid Method
Distance between the center of gravity in two clusters is
used as the distance between the clusters. The centers of
two clusters are calculated based on the number of the
document in each cluster.

• Median Method
Distance between the center of gravity in two clusters is
used as the distance between the clusters. The centers of
two clusters are calculated without the weighted by the
number of the document in each cluster.

• Ward Method
Form the cluster as to maximize the ratio between the
variance in the cluster and the variance between the
clusters.

D. Procedure
The procedure of the proposal method is as follow;
1) Word Segmentation

List words from the every information recorded in DSSs

with MeCab.
2) Calculate TF-IDF value

Calculate the TF-IDF value of every word in each
information. Words which used only once within the
whole information in the DSSs are removed because
cannot use for recommendation.

3) Clustering
Cluster the information by one of the clustering algo-
rithm based on the TF-IDF value. The result of this step
makes one cluster which includes every information.

4) Divide the cluster
Divide the result into twenty clusters based on the
distance.

5) Recommendation
Recommend a set of information which are divided into
a same cluster to the user.

Compared with previous work, the method recommends
the information without specific keywords selected by the
developer, which is particularly useful for new developers of
the project.

IV. EXPERIMENT

We experiment with the proposal method to confirm the
recommendation accuracy. In the experiment, we adapt the
method to a data set of the open source software project,
Nadeshiko3; a programming language using Japanese sen-
tences on method/variable name and other operations. The data
set includes documents from BTS (1,842 tickets recorded from
Oct. 2008 to Sept. 2010) and VCS (235 checkins recorded
from Aug. 2008 to Sept. 2011) used in the project.

Recommendation accuracy of the method is evaluated with
linkage between documents which recorded by developers. We
presume that the linkage between documents by the developers
is a vital evidence that the documents have a relevant. There-
fore, we calculate three metrics from the linkage information
for each document; recall, precision, and F1-value. These three
metrics are calculated with following four variables;

• True Positive (TP): Number of documents which is
included in correct answers and recommended by the
method.

• False Positive (FP): Number of documents which is
included in correct answers and not recommended by the
method.

• False Negative (FN): Number of documents which is not
included in correct answers but is recommended by the
method.

• True Negative (TN): Number of documents which is not
included in correct answers, and is not recommended by
the method.

Precision is the percentage of the related documents that is
recommended by the method. Precision can be expressed as
the following expression. Precision takes a range from zero to
one, the higher the value means documents are recommended
to developers with lesser misclassification.

3http://nadesi.com/

TABLE II
NUMBER OF DOCUMENTS IN EACH CLUSTER

VCS BTS
Min. Max. Min. Max.

Complete Linkage Method 2 39 6 142
Single Linkage Method 1 70 1 1818
Group Average Method 4 39 6 145

Centroid Method 1 39 6 145
Ward Method 4 39 56 152

Median Method 1 39 1 196

Precision =
TP

TP + FP
(4)

Recall is the percentage of the recommended documents
in the all related documents. Recall can be expressed as
the following expression. Recall takes a range from zero to
one, the higher the value means the method recommends the
document to developers more correctly.

Recall =
TP

TP + FN
(5)

F1-value is the harmonic mean of precision and recall, it
can be expressed as the following expression. F1-value takes
a range from zero to one, indicates high value when the both
precision and recall are high.

F1− value = 2 · Precision ·Recall

Precision+Recall
(6)

V. RESULT AND DISCUSSION

A. Recommendation Accuracy

Table I shows a result of the experiment on two DSSs.
Each value describes Precision, Recall, and F1-value of the
method with six clustering algorithm. The results from VCS
show the Recall is high on the every clustering algorithm
(0.816 on average.) On the other hand, Precision is very low
on the every algorithm (0.086 on average.) Therefore, F1-
value becomes a very low (0.102) on average. The results
from BTS show a similar tendency with VCS. Here, Recall
is very high (0.944), however Precision is low (0.040) on
average. As a result, F1-value in TBS is also low (0.050.)
The result depicts the method recommends lot of documents
which belong to irrelevant documents. A main cause of the
result is the number of the cluster which decided as fixed
value. In this experiment, each data from DSSs were divided
into twenty clusters. VCS includes 235 documents, therefore,
one cluster from the VCS data consists of 11.75 documents
on average. Also BTS includes 1,842 documents, hence, one
cluster from the BTS data consists of 92.1 documents on
average. In this software projects, links between the documents
were connected one by one by developers. As a result, most
of document has only one link, that is, true positive (TP) is
1. Therefore, it is considered that Precision of most cluster in
VCS became 0.085 (1/11.75) on average.

TABLE I
ACCURACY FOR VCS AND BTS

VCS BTS
Precision Recall F1-value Precision Recall F1-value

Complete Linkage Method 0.090 0.798 0.113 0.035 0.999 0.065
Single Linkage Method 0.074 0.833 0.061 0.072 0.986 0.018
Group Average Method 0.073 0.821 0.105 0.011 0.996 0.022

Centroid Method 0.091 0.798 0.095 0.035 0.996 0.065
Ward Method 0.089 0.845 0.134 0.035 0.999 0.066

Median Method 0.095 0.798 0.104 0.049 0.989 0.061
Average 0.086 0.816 0.102 0.040 0.994 0.050

Table II shows the number of documents that included in
each cluster of the VCS and BTS. The table shows that a
little difference between clustering algorithms were observed
in VCS. However, a difference was observed between the
algorithms in BTS. The most characteristic result was shown at
Single linkage method in six clustering methods. In the case of
Single linkage method in BTS, 1,818 documents were included
in one cluster. This means 1,817 documents are recommended
in one document to developer. Similarly, in the case of Single
linkage method, 70 documents were included in one cluster
of VCS.

Fig. 3 shows a tree that is created from clustering result
of VCS data with Single Linkage Method. Each number in
the tree represents a document or cluster. The length of the
horizontal line represents the distance between clusters, and
the vertical line represents the clusters which were combined
to one cluster. The broken line represents the root that was
divided into twenty trees from single tree. The figure shows
the most documents has been classified into the single cluster
represented at bottom of the figure. Results from other cluster-
ing algorithms show a fewer maximum numbers of documents
in one cluster, hence, the Single Linkage Method is unsuitable
for the target project.

The results suggest that the our proposal method recom-
mend the relevant documents with slight leakage. On the
other hand, the method recommends 12 documents from
VCS, and 92 documents from BTS on average. This number
of the recommended documents bring a much work to the
developers. To improve the precision of the method, decrement
of the cluster size is required. Improvement of the Precision
without decrease of Recall is the our future work.

B. Comparison with the Previous Work

1) Recommendation Accuracy: This section compares the
accuracy between the proposal method and our previous result
[4]. The system implemented in the previous work recom-
mends the five documents which is most similar to a target
document. Accuracy measurement in the previous work is
the percentage of relevant documents within the above five
document. Here, we compare the accuracy measurement in
previous work and Recall of this work.

Fig. 4 shows a comparison between the proposal method and
the previous work. Recall of VCS and BTS in the proposal
methods are 0.816 and 0.994, respectively. Recommendation
accuracy of VCS and BTS in the previous system are 0.533

and 0.579, respectively. The figure suggests the accuracy of
the proposal method in this paper is higher than the accuracy
in previous work.

2) Applicability: Our previous work used the number of
specific keywords that appears in the document as a charac-
teristic of the document. The specific keywords were selected
by the contributor of the target projects to represent the
characteristics in the project. Because the words have been
determined by the developer subjectivity, it is difficult to apply
the technique to other development projects. In addition to this,
it was impossible to recommend the document which does not
include the words.

Compare to the previous work, the proposal method in
this paper selects the keyword from the dataset by TD-IDF.
Therefore, the method can adapt to the other development
projects without the knowledge of the contributor.

VI. CONCLUSION

In this paper, we improved the system which created in
the previous work to solve the problem that developer cannot
access to the information belong to the same context smoothly.
We proposed the recommendation method to describe the rele-
vant information of the information the user currently looking
at. Our method gets a document from the DSSs, extract the
word, then calculate the feature vector based on the TF-IDF
value of each word. Then the method classifies the documents
from the degree of similarity of feature vectors, and documents
in the same cluster are recommended as relevant information.
The result of the experiment showed that the proposed method
improves the recommendation accuracy compared with the
previous work.

Improvement of the Precision and F1-value is one of the
future work. We used fixed number of clusters to be divided in
this paper. Effect of dynamical change of the number based on
the accuracy metrics such as F1-value should be verified at the
future work. Another future work of the study is verification
of the our method with different dataset from other develop-
ment projects. We will examine whether the characteristics
of software development dataset affects the recommendation
accuracy. Modification of clustering algorithm based on the
characteristics of the software development dataset is also the
future work.

We used term frequency and inverse document frequency
to recommend a document to a developer. However, the high
value of idf decreases importance of the word which appears

111

2

9

3

4

5

6

7

8

10

11

100

12

93

18

133

13

15

14

16

19

103

54

82

127

101

17

136

37

78

134

135

66

53

60

67

71

70

68

69

62

64

63

65

61

57

55

56

58

59

41

42

52

20

47

35

40

43

49

44

45

46

51

48

50

39

27

21

22

23

38

24

25

36

33

34

26

32

28

31

29

30

110

72

73

115

132

130

131

128

129

97

95

105

74

75

76

77

108

102

104

109

106

107

90

79

85

89

80

81

83

84

86

87

88

98

99

96

91

92

94

126

113

117

122

112

114

120

116

118

119

121

125

123

124

Height

1 2 3 4 5 6

Fig. 3. Tree of VCS with Single Linkage Method

Fig. 4. Comparison of Proposal Method and Previous Work

on many documents. That is, if a developer find a fatal
fault in their project and discusses about the fault actively,
the importance of the keyword used in the discussion is
decreased. To avoid the problem, co-occurrence frequency
between keywords is a useful metrics.

ACKNOWLEDGMENT

This work is being conducted as a part of Grant-in-aid for
Young Scientists (B), 24700038.

REFERENCES

[1] C. R. B. De Souza, S. D. Basaveswara, and D. F. Redmiles, “Sup-
porting Global Software Development with Event Notification Servers,”
In Proc. the ICSE 2002 International Workshop on Global Software
Development, 2002.

[2] B. Sengupta, S. Chandra, and V. Sinha, “A Research Agenda for
Distributed Software Development,” In Proc. the 28th International
Conference on Software Engineering (ICSE), pp.731-740, 2006.

[3] C. Gutwin, R. Penner, and K. Schneider, “Group Awareness in Dis-
tributed Software Development,” In Proc. the 2004 ACM Conference
on Computer Supported Cooperative Work (CSCW), pp.72-81, 2004.

[4] S. Tani, A. Ihara, M. Ohira, H. Uwano, and K. Matsumoto, “A System
for Information Integration between Development Support Systems,” In
Proc. the 3rd International Workshop on Empirical Software Engineering
in Practice (IWESEP), 2011.

[5] M. Ohira, R. Yokomori, M. Sakai, K. Matsumoto, K. Inoue, and K.
Torii, “Empirical Project Monitor: A Tool for Mining Multiple Project
Data,” In Proc. International Workshop on Mining Software Repositories
(MSR2004), pp.42–46, 2004.

[6] MeCab, “MeCab: Yet Another Part-of-Speech and Morphological Ana-
lyzer,” http://mecab.sourceforge.net/ 2011.

[7] G. Salton, and M. J. McGill, “introduction to modern information
retrieval,” McGraw - Hill, NewTork, 1983.

